首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Primary neuronal cultures from fetal rat brain were utilized to investigate the possible role of insulin-like growth factor I (IGF-I) in neuronal growth and differentiation. 125I-IGF-I binding to intact cultured neurons was specific and saturable with an apparent Kd of 7.0 +/- 1.2 nM and a Bmax of 1.8 +/- 0.3 pmol/mg protein. Binding of 125I-IGF-I to neurons was inhibited by IGF-I, followed by IGF-II and insulin. 7 S nerve growth factor, but not beta-nerve growth factor, also inhibited 125I-IGF-I binding. A similar binding site was detected on brain membranes. Affinity cross-linking of 125I-IGF-I to intact cultured neurons revealed, under reducing conditions, a major binding moiety with an Mr of 115,000 and a minor component at Mr 260,000. The former represents a neuronal type of the IGF-I receptor alpha subunit, whereas the latter probably represents an alpha dimer. The Mr = 115,000 binding component for 125I-IGF-I was also present in membranes prepared from postnatal whole brain. In contrast, the binding moiety in cultured glial cells was of Mr = 135,000, which was identical to the IGF-I receptor alpha subunit of placenta. Thus mature brain, despite its cellular heterogeneity, expresses a structural subtype of IGF-I receptor which appears to be unique to differentiated neurons. Moreover, glial and neuronal cultures secreted a polypeptide which specifically bound IGF-I; the apparent Mr of this binding protein was determined by affinity cross-linking to be approximately 35,000. The presence of neuronal IGF-I receptors and binding proteins suggested that IGF-I may exert neurotrophic effects on developing neurons. This possibility was supported by the observation that IGF-I markedly stimulated neuronal RNA synthesis.  相似文献   

2.
In both NIH3T3 cells and HepG2 cells, insulin-like growth factor I (IGF-I) receptors possess two beta-subunits that display different electrophoretic mobilities. Increasing concentrations of IGF-I stimulated the phosphorylation of both beta-subunits to a similar extent, whereas insulin stimulated the phosphorylation of both subunits only at elevated concentrations. Both beta-subunits were immunoprecipitated with p5, an insulin receptor-specific anti-peptide antibody, or with A410, a polyclonal anti-insulin receptor antisera. However, if the tetrameric IGF-I receptor was first dissociated into alpha-beta heterodimers with 1 mM dithiothreitol, only the lower molecular weight beta-subunit was immunoprecipitated. These results suggested that p5 and A410 specifically recognized the lower molecular weight beta-subunit but immunoprecipitated the higher molecular weight beta-subunit because it was present in the same disulfide linked tetramer. Similarly, alpha-IR-3, an antibody specific for the alpha-subunit of the IGF-I receptor, immunoprecipitated both types of beta-subunit from the intact tetramer but only the higher molecular weight beta-subunit from the dissociated heterodimers, suggesting that there are two types of alpha-subunits in the same tetramer and that the alpha-subunit recognized by alpha-IR-3 is only associated with the higher molecular weight beta-subunit. Tryptic phosphopeptide maps of the lower molecular weight beta-subunit of IGF-I receptor were different from the higher molecular weight beta-subunit, but were similar to those of the insulin receptor beta-subunit. Thus, by immunochemical cross-reactivity and structural criteria, the lower molecular weight beta-subunit of the IGF-I receptor was similar to the beta-subunit of insulin receptor. These data suggest that there exists a species of IGF-I receptor that is a hybrid composed of an insulin receptor alpha-beta heterodimer and an IGF-I receptor alpha-beta heterodimer. The existence of such a hybrid receptor could have important functional consequences.  相似文献   

3.
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   

4.
Four mutants of human insulin-like growth factor I (hIGF I) have been purified from the conditioned media of yeast transformed with an expression vector containing a synthetic gene for hIGF I altered by site-directed mutagenesis. hIGF I has the sequence Phe-23-Tyr-24-Phe-25 which is homologous to a region in the B-chain of insulin. [Phe23,Phe24,Tyr25]IGF I, in which the sequence is altered to exactly correspond to the homologous sequence in insulin, is equipotent to hIGF I at the types 1 and 2 IGF and insulin receptors. [Leu24]IGF I and [Ser24]IGF I have 32- and 16-fold less affinity than hIGF I at the human placental type 1 IGF receptor, respectively. These peptides are 10- and 2-fold less potent at the placental insulin receptor, respectively. [Leu24]IGF I and [Ser24]IGF I have similarly reduced affinities for the type 1 IGF receptor of rat A10 and mouse L cells. Thus, the importance of the interaction of residue 24 with the receptor is conserved in several species. In three cell-based assays, [Leu24]IGF I and [Ser24]IGF I are full agonists with reduced efficacy compared to hIGF I. Desoctapeptide [Leu24]IGF I, in which the loss of aromaticity at position 24 is combined with the deletion of the carboxyl-terminal D region of hIGF I, has 3-fold lower affinity than [Leu24]IGF I for the type 1 receptor and 2-fold higher affinity for the insulin receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
D O Morgan  K Jarnagin  R A Roth 《Biochemistry》1986,25(19):5560-5564
The receptor for insulin-like growth factor I (IGF-I) was purified from the rat liver cell line BRL-3A by a combination monoclonal anti-receptor antibody column and a wheat germ agglutinin column. Analyses of these receptor preparations on reduced sodium dodecyl sulfate-polyacrylamide gels yielded protein bands of Mr 136K (alpha subunit) and Mr 85K and 94K (beta subunit). These receptor preparations bound 5 times more IGF-I than insulin, and the binding of both labeled ligands was more potently inhibited by unlabeled IGF-I than by insulin. These results indicate that these receptor preparations contained predominantly the IGF-I receptor. This highly purified receptor preparation was found to possess an intrinsic kinase activity; autophosphorylation of the receptor beta subunit was stimulated by low concentrations of IGF-I (half-maximal stimulation at 0.4 nM IGF-I). Twentyfold higher concentrations of insulin were required to give comparable levels of stimulation. A monoclonal antibody that inhibits the insulin receptor kinase was found to inhibit the IGF-I receptor kinase with the same potency with which it inhibits the insulin receptor. In contrast, monoclonal antibodies to other parts of the insulin receptor only poorly recognized the IGF-I receptor. A comparison of V8 protease digests of the insulin and IGF-I receptors again revealed some similarities and also some differences in the structures of these two receptors. Thus, the IGF-I receptor is structurally, antigenically, and functionally similar to but not identical with the insulin receptor.  相似文献   

6.
Serum insulin-like growth factor I regulates brain amyloid-beta levels   总被引:1,自引:0,他引:1  
Levels of insulin-like growth factor I (IGF-I), a neuroprotective hormone, decrease in serum during aging, whereas amyloid-beta (Abeta), which is involved in the pathogenesis of Alzheimer disease, accumulates in the brain. High brain Abeta levels are found at an early age in mutant mice with low circulating IGF-I, and Abeta burden can be reduced in aging rats by increasing serum IGF-I. This opposing relationship between serum IGF-I and brain Abeta levels reflects the ability of IGF-I to induce clearance of brain Abeta, probably by enhancing transport of Abeta carrier proteins such as albumin and transthyretin into the brain. This effect is antagonized by tumor necrosis factor-alpha, a pro-inflammatory cytokine putatively involved in dementia and aging. Because IGF-I treatment of mice overexpressing mutant amyloid markedly reduces their brain Abeta burden, we consider that circulating IGF-I is a physiological regulator of brain amyloid levels with therapeutic potential.  相似文献   

7.
Stable transfectants of Chinese hamster ovary (CHO) cells were developed that expressed the protein encoded by a human insulin-like growth factor I (IGF-I) receptor cDNA. The transfected cells expressed approximately 25,000 high affinity receptors for IGF-I (apparent Kd of 1.5 X 10(-9) M), whereas the parental CHO cells expressed only 5,000 receptors per cell (apparent Kd of 1.3 X 10(-9) M). A monoclonal antibody specific for the human IGF-I receptor inhibited IGF-I binding to the expressed receptor and immunoprecipitated polypeptides of apparent Mr values approximately 135,000 and 95,000 from metabolically labeled lysates of the transfected cells but not control cells. The expressed receptor was also capable of binding IGF-II with high affinity (Kd approximately 3 nM) and weakly recognized insulin (with about 1% the potency of IGF-I). The human IGF-I receptor expressed in these cells was capable of IGF-I-stimulated autophosphorylation and phosphorylation of endogenous substrates in the intact cell. This receptor also mediated IGF-I-stimulated glucose uptake, glycogen synthesis, and DNA synthesis. The extent of these responses was comparable to the stimulation by insulin of the same biological responses in CHO cells expressing the human insulin receptor. These results indicate that the isolated cDNA encodes a functional IGF-I receptor and that there are no inherent differences in the abilities of the insulin and IGF-I receptors to mediate rapid and long term biological responses when expressed in the same cell type. The high affinity of this receptor for IGF-II also suggests that it may be important in mediating biological responses to IGF-II as well as IGF-I.  相似文献   

8.
The cytoplasmic domain of the beta subunit of the insulin-like growth factor I receptor (amino acids 936-1337) was overexpressed in Sf9 insect cells using a baculovirus expression system, and the 6-His tagged receptor was purified by metal-affinity chromatography. Autophosphorylation of the receptor was concentration dependent, consistent with a trans phosphorylation mechanism. Phosphoamino acid analysis of the autophosphorylated receptor showed predominantly phosphotyrosine, but phosphoserine and phosphothreonine were also present. However, when the receptor was further purified by gel filtration on Sephadex G-100 and then autophosphorylated, phosphoamino acid analysis showed only phosphotyrosine. We conclude that the IGF-I receptor tyrosine kinase is not a dual-specificity kinase and that autophosphorylation of the beta subunit is by a trans mechanism.  相似文献   

9.
Epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) synergistically stimulate placental lactogen (hPL) secretion by placental cells. To understand the mechanism of actions we have investigated a possible heterologous regulatory effect of EGF and IGF-I on each other's receptors. Pretreatment of the cells with IGF-I had no effect on [125I]-EGF binding or the down-regulation of EGF receptor. Pretreatment of the cells with EGF, concomitantly with IGF-I, had no effect on [125I]-IGF-I binding but it augmented the IGF-I down-regulation of IGF-I receptor. The time required to initiate the IGF-I-induced down-regulation of IGF-I receptor was reduced by 4 h in the presence of EGF. IGF-I-down-regulated decreased (P less than 0.05) receptor numbers were further decreased (p less than 0.05) in the presence of EGF. These results suggested that the synergistic effect of EGF and IGF-I seen in hPL secretion by placental cells is not due to direct heterologous hormone-receptor interactive effects. However, the effects seen may be due to a differentiating effect of EGF sensitizing the cells for responsiveness to IGF-I.  相似文献   

10.
Insulin-like growth factors I and II (IGF-I and II) and insulin are chemotactic agents for the human melanoma cell line A2058. As shown in this report, the motility receptor mediating this response is the heterodimeric type I IGF receptor. These three factors are able to compete with 125I-labeled IGF-I for binding to the cell surface with IC50 values equal to approximately 2 (IGF-I), approximately 150 (IGF-II), and approximately 300 nM (insulin). Cross-linking of 125I-IGF-I to the cell surface with disuccinimidyl suberate followed by analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography reveals a 130-kDa protein (reduced) consistent with the alpha component of a type I receptor and a 38-kDa protein which does not bind insulin, and thus could be another IGF-I cell surface binding protein. The anti-IGF-I receptor monoclonal antibody (alpha IR-3) also competes with labeled IGF-I in binding experiments. In contrast, a control monoclonal antibody, matched to alpha IR-3 with respect to IgG subclass, has no significant effect on IGF-I binding. While alpha IR-3 inhibits the motility induced by IGF-I, IGF-II, and insulin, pertussis toxin (0.01-1.0 micrograms/ml) has no significant effect on the motility induced by the insulin-like growth factors or insulin on this cell line. Therefore, the type I IGF receptor appears to mediate a highly potent pertussis toxin-insensitive motility response to IGF-I, IGF-II, and insulin. In contrast, motility induced by the autocrine motility factor, a cytokine produced by the A2058 cells, is not affected by alpha IR-3 but is extremely sensitive to pertussis toxin. When mixtures of autocrine motility factor and IGF-I are employed to induce chemotaxis, the resulting motility is greater than that induced by either agent alone. These data indicate that motility in this melanoma cell line can be initiated through multiple receptors that stimulate the cells by separate transduction pathways. This capability to respond to multiple stimuli could enhance the metastatic potential.  相似文献   

11.
We have recently identified high and low affinity insulin-like growth factor I (IGF I) binding sites in solubilized human placental membranes and purified the high affinity IGF I receptor by IGF I affinity chromatography (Tollefsen, S. E., Thompson, K., and Petersen, D. J. (1987) J. Biol. Chem. 262, 16461-16469). To define the structural basis for high affinity IGF I binding, we have examined the effect of disulfide bond reduction on the binding parameters of the high affinity IGF I receptor. We find that the disulfide bonds linking the two alpha beta dimers of the IGF I receptor heterotetramer are reduced by incubation at pH 8.75 with 2 mM dithiothreitol (DTT) for 5 min at room temperature. Gel filtration chromatography on a Superose 12 fast protein liquid chromatography column indicates that the alpha beta dimers do not remain associated by noncovalent interactions after reduction. Scatchard plots of IGF I binding to the IGF I receptor incubated at pH 8.75 with or without DTT indicate that the IGF I receptor alpha beta dimers have a 6.1 +/- 1.6 (mean +/- S.D.) times lower affinity than the heterotetramer for IGF I. The total binding capacity of the IGF I receptor treated with DTT is 1.6 +/- 0.3 (mean +/- S.D.) times higher than that of an equal amount of receptor treated without DTT. These results are consistent with a model in which the heterotetramer binds a single IGF I molecule with high affinity, whereas each of the two alpha beta dimers binds an IGF I molecule with lower affinity after dissociation. We conclude that association of two alpha beta dimers is required for formation of an IGF I receptor with high affinity for its ligand.  相似文献   

12.
Available evidence suggests that insulin-like growth factor I receptor (IGF-IR) expression leads to increased cellular radioresistance. The most direct explanation of these findings predicts that IGF-IR is the source of survival signals in resistant cells. Mutational analysis revealed that protein truncated at amino acid 1245 in the C-terminus retained the ability of IGF-IR to confer radioresistance whereas point mutations at both Tyr-1250 and Tyr-1251 abrogated this effect using IGF-IR-deficient mouse embryo fibroblasts (R-) as a recipient. In cells expressing the latter mutant receptors, both phosphatidylinositol-3(') kinase (PI3-K) and mitogen-activated protein kinase (MAPK) signaling pathways remained intact, and addition of exogenous IGF-I could not change the radiosensitivity of these cells. Further analysis indicated that the abrogation of radioresistance required the presence of His-1293 and Lys-1294. These results suggest a novel regulatory role of the C-terminus of IGF-IR in mediating cellular radioresistance that may be independent of survival signals transmitted through this receptor.  相似文献   

13.
Recent evidence indicates that STAT proteins can be activated by a variety of receptor and non-receptor protein-tyrosine kinases. Unlike cytokine-induced activation of STATs, where JAKs are known to play a pivotal role in phosphorylating STATs, the mechanism for receptor protein-tyrosine kinase-mediated activation of STATs remains elusive. In this study, we investigated the activation of STAT proteins by the insulin-like growth factor I receptor (IGF-IR) in vitro and in vivo and assessed the role of JAKs in the process of activation. We found that STAT3, but not STAT5, was activated in response to IGF-I in 293T cells cotransfected with IGF-IR and STAT expression vectors. Moreover, tyrosine phosphorylation of STAT3, JAK1, and JAK2 was increased upon IGF-I stimulation of endogenous IGF-IR in 293T cells transfected with the respective STAT or JAK expression vector. Supporting the observation in 293T cells, endogenous STAT3 was tyrosine-phosphorylated upon IGF-I stimulation in the muscle cell line C2C12 as well as in various embryonic and adult mouse organs during different stages of development. Dominant-negative JAK1 or JAK2 was able to block the IGF-IR-mediated tyrosine phosphorylation of STAT3 in 293T cells. A newly identified family of proteins called SOCS (suppressor of cytokine signaling), including SOCS1, SOCS2, SOCS3 and CIS, was able to inhibit the IGF-I-induced STAT3 activation as well with varying degrees of potency, in which SOCS1 and SOCS3 appeared to have the higher inhibitory ability. Inhibition of STAT3 activation by SOCS could be overcome by overexpression of native JAK1 and JAK2. We conclude that IGF-I/IGF-IR is able to mediate activation of STAT3 in vitro and in vivo and that JAKs are essential for the process of activation.  相似文献   

14.
Insulin-like growth factor I (IGF-I), a growth hormone (GH)-dependent growth factor exerts feedback regulation of GH by inhibiting GH gene expression. IGF-I inhibition of GH secretion is enhanced 3-5-fold in GC rat pituitary cells overexpressing the wild type 950Tyr human IGF-I receptor which autophosphorylates appropriately. To determine the critical amino acid sequence responsible for IGF-I signaling, insertion, deletion, and site-directed mutants were constructed to substitute for 950Tyr in exon 16 of the human IGF-I receptor beta-subunit transmembrane domain. All mutant transfectants bound IGF-I with a similar Kd to untransfected cells but had markedly increased (7-34-fold) IGF-I-binding sites. GH responsiveness to IGF-I was tested in mutant transfectants. Overexpressed site-directed and insertion mutant IGF-I receptors exhibited a modest suppressive effect on GH in response to the IGF-I ligand, similar to that observed in untransfected cells. Deletion mutant (IG-FIR delta 22) (amino acid 944-965) did not transduce the IGF-I signal to the GH gene. Site-directed and insertion mutants therefore did not enhance the IGF-I response of the endogenous rat receptor, unlike the 950Tyr wild type transfectants which enhanced the IGF-I signal. All mutant transfectants, except the deletion mutant, internalized radioactive ligand similarly to 950Tyr wild type transfectants. 950Tyr of the human IGF-I receptor is therefore required for IGF-I signal transduction in the pituitary somatotroph, but not for IGF-I-mediated internalization.  相似文献   

15.
Insulin-like growth factor (IGF) I receptor was purified from Triton X-100-solubilized human placental membranes by wheat germ agglutinin-Sepharose chromatography followed by immunoaffinity chromatography using alpha IR-3, a monoclonal antibody directed against the IGF-I receptor. Purification of 3200-fold and 2800-fold was achieved from wheat germ agglutinin-Sepharose eluates with regard to IGF-I binding and kinase activities. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions revealed two major protein bands corresponding to the alpha and beta subunits of the receptor, which accounted for at least 90% of the protein content. The purified receptor bound 10-20 micrograms of IGF-I/mg of protein and was more than 95% free of contamination by insulin receptor. It sedimented in glycerol gradients as a single species with a sedimentation coefficient of 13.7 S and gave three protein bands with Mr = approximately 300,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, indicating that alpha 2 beta 2 is an intact form of the IGF-I receptor. The purified receptor, when incubated with [gamma-32P] ATP, became phosphorylated at tyrosine residues of its beta subunit. This was stimulated 3-fold by IGF-I. It also had IGF-I-stimulated tyrosine kinase activity (5264 pmol of 32P incorporated/min/mg of protein) toward a synthetic peptide corresponding to the autophosphorylation site of pp60src. These data strongly suggest that it is a tyrosine-specific protein kinase.  相似文献   

16.
The ATP pools of monolayer cultures of rat embryo fibroblasts and rat liver cells (BRL-3A2) were labeled with [32P]H3PO4. The type II insulin-like growth factor (IGF) receptor was purified by affinity chromatography on wheat germ lectin-Sepharose and IGF-II-Sepharose columns. A phosphorylated species having the expected size of the type II receptor (Mr = 220,000 without reduction, Mr = 260,000 with reduction) was identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. IGF-II stimulated phosphorylation of the type II receptor in BRL-3A2 rat liver cells. Lability of the receptor phosphate bonds to alkaline pH suggests that the bulk of phosphorylation was occurring on serine residues.  相似文献   

17.
The receptors for insulin and insulin-like growth factor-I (IGF-I) are closely related in primary sequence and overall structure. We have examined the immunological relationships between these receptors by testing the reactivity of anti-(insulin receptor) monoclonal antibodies with IGF-I receptors in various tissues and cell lines. Antibodies for six distinct epitopes reacted with a subfraction of IGF-I receptors, as shown by inhibition of 125I-IGF-I binding, precipitation of 125I-IGF-I-receptor complexes or immunodepletion of receptor from tissue extracts before binding assays. Both immunoreactive and non-immunoreactive subfractions displayed the expected properties of 'classical' IGF-I receptors, in terms of relative affinities for IGF-I and insulin. The proportion of total IGF-I receptors which was immunoreactive varied in different cell types, being approx. 40% in Hep G2 cells, 35-40% in placental membranes and 75-85% in IM-9 cells. The immunoreactive fraction was somewhat higher in solubilized receptors than in the corresponding intact cells or membranes. A previously described monoclonal antibody, alpha-IR-3, specific for IGF-I receptors, inhibited IGF-I binding by more than 80% in all preparations. When solubilized placental receptors were pretreated with dithiothreitol (DTT) under conditions reported to reduce intramolecular (class I) disulphide bonds, the immunoreactivity of IGF-I receptors was abolished although total IGF-I binding was little affected. Under the same conditions insulin receptors remained fully immunoreactive. When solubilized receptor preparations were fractionated by gel filtration, both IGF-I and insulin receptors ran as symmetrical peaks of identical mobility. After DTT treatment, the IGF-I receptor was partially converted to a lower molecular mass form which was not immunoreactive. The insulin receptor peak showed a much less pronounced skewing and remained fully immunoreactive in all fractions. It is concluded that the anti- (insulin receptor) antibodies do not react directly with IGF-I receptor polypeptide, and that the apparent immunoreactivity of a subfraction of IGF-I receptors reflects their physical association with insulin receptors, both in cell extracts and in intact cells. The most likely basis for this association appears to be a 'hybrid' receptor containing one half (alpha beta) of insulin receptor polypeptide and the other (alpha' beta') of IGF-I receptor polypeptide within the native (alpha beta beta' alpha') heterotetrameric structure.  相似文献   

18.
Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe-1,Val1,Asn2, Gln3,His4,Ser8, His9,Glu12,Tyr15,Leu16]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has greater than 1,000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln3,Ala4]IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr15,Leu16]IGF-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. This peptide is also equipotent to hIGF-I at the types 1 and 2 IGF receptors. The peptide in which these four-point mutations are combined, [Gln3,Ala4,Tyr15,Leu16]IGF-I, has 600-fold reduced affinity for the serum binding proteins. This peptide has 10-fold increased potency for the insulin receptor, but is equipotent to hIGF-I at the types 1 and 2 IGF receptors. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, these peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.  相似文献   

19.
20.
The insulin-like growth factor I receptor (IGF-IR) has the ability to confer clonogenic radioresistance following ionizing irradiation. We attempted to determine the downstream pathways involved in IGF-IR-mediated radioresistance and used mouse embryo fibroblasts deficient in endogenous IGF-IR (R-) as recipients for a number of mutant IGF-IRs. Mutational analysis revealed that the tyrosine at residue 950 (Tyr-950) of IGF-IR, as well as the C-terminal domain, are required for radioresistance and that both domains must be mutated to abrogate the phenotype. Furthermore, the contribution of downstream pathways was analyzed by combining the use of wild-type or Tyr-950 and C-terminal mutants with specific inhibitors of phosphatidylinositol 3'-kinase (PI3-K) or mitogen-activated protein extracellular signal-regulated kinase (ERK) kinase (MEK). Radioresistance could be induced by IGF-IR as long as the ability of the receptor to stimulate the MEK/ERK pathway was retained. This was confirmed by the expression of constitutively active MEK in R- cells. The ability to stimulate the PI3-K pathway alone was not sufficient, but PI3-K activation coupled with MEK/ERK pathway-independent signals from the C terminus was able to induce radioresistance. Taken together, these results indicate that the IGF-IR-mediated radioresistant signaling mechanism progresses through redundant downstream pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号