首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Reconstructing the genome of a species from short fragments is one of the oldest bioinformatics problems. Metagenomic assembly is a variant of the problem asking to reconstruct the circular genomes of all bacterial species present in a sequencing sample. This problem can be naturally formulated as finding a collection of circular walks of a directed graph G that together cover all nodes, or edges, of G.

Approach

We address this problem with the “safe and complete” framework of Tomescu and Medvedev (Research in computational Molecular biology—20th annual conference, RECOMB 9649:152–163, 2016). An algorithm is called safe if it returns only those walks (also called safe) that appear as subwalk in all metagenomic assembly solutions for G. A safe algorithm is called complete if it returns all safe walks of G.

Results

We give graph-theoretic characterizations of the safe walks of G, and a safe and complete algorithm finding all safe walks of G. In the node-covering case, our algorithm runs in time \(O(m^2 + n^3)\), and in the edge-covering case it runs in time \(O(m^2n)\); n and m denote the number of nodes and edges, respectively, of G. This algorithm constitutes the first theoretical tight upper bound on what can be safely assembled from metagenomic reads using this problem formulation.
  相似文献   

2.

Background

Identifying protein complexes plays an important role for understanding cellular organization and functional mechanisms. As plenty of evidences have indicated that dense sub-networks in dynamic protein-protein interaction network (DPIN) usually correspond to protein complexes, identifying protein complexes is formulated as density-based clustering.

Methods

In this paper, a new approach named iOPTICS-GSO is developed, which is the improved Ordering Points to Identify the Clustering Structure (OPTICS) algorithm with Glowworm swarm optimization algorithm (GSO) to optimize the parameters in OPTICS when finding dense sub-networks. In our iOPTICS-GSO, the concept of core node is redefined and the Euclidean distance in OPTICS is replaced with the improved similarity between the nodes in the PPI network according to their interaction strength, and dense sub-networks are considered as protein complexes.

Results

The experiment results have shown that our iOPTICS-GSO outperforms of algorithms such as DBSCAN, CFinder, MCODE, CMC, COACH, ClusterOne MCL and OPTICS_PSO in terms of f-measure and p-value on four DPINs, which are from the DIP, Krogan, MIPS and Gavin datasets. In addition, our predicted protein complexes have a small p-value and thus are highly likely to be true protein complexes.

Conclusion

The proposed iOPTICS-GSO gains optimal clustering results by adopting GSO algorithm to optimize the parameters in OPTICS, and the result on four datasets shows superior performance. What’s more, the results provided clues for biologists to verify and find new protein complexes.
  相似文献   

3.

Objectives

N-Acetyl-d-neuraminic acid (Neu5Ac) is often synthesized from exogenous N-acetylglucosamine (GlcNAc) and excess pyruvate. We have previously constructed a recombinant Escherichia coli strain for Neu5Ac production using GlcNAc and intracellular phosphoenolpyruvate (PEP) as substrates (Zhu et al. Biotechnol Lett 38:1–9, 2016).

Results

PEP synthesis-related genes, pck and ppsA, were overexpressed within different modes to construct PEP-supply modules, and their effects on Neu5Ac production were investigated. All the PEP-supply modules enhanced Neu5Ac production. For the best module, pCDF-pck-ppsA increased Neu5Ac production to 8.6 ± 0.15 g l?1, compared with 3.6 ± 0.15 g l?1 of the original strain. Neu5Ac production was further increased to 15 ± 0.33 g l?1 in a 1 l fermenter.

Conclusions

The PEP-supply module can improve the intracellular PEP supply and enhance Neu5Ac production, which benefited industrial Neu5Ac production.
  相似文献   

4.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

5.
6.

Objectives

To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter.

Results

P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants.

Conclusions

A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.
  相似文献   

7.
8.

Background

Recently, Marcus et al. (Bioinformatics 30:3476–83, 2014) proposed to use a compressed de Bruijn graph to describe the relationship between the genomes of many individuals/strains of the same or closely related species. They devised an \(O(n\log g)\) time algorithm called splitMEM that constructs this graph directly (i.e., without using the uncompressed de Bruijn graph) based on a suffix tree, where n is the total length of the genomes and g is the length of the longest genome. Baier et al. (Bioinformatics 32:497–504, 2016) improved their result.

Results

In this paper, we propose a new space-efficient representation of the compressed de Bruijn graph that adds the possibility to search for a pattern (e.g. an allele—a variant form of a gene) within the pan-genome. The ability to search within the pan-genome graph is of utmost importance and is a design goal of pan-genome data structures.
  相似文献   

9.
10.

Objectives

To improve the stability and sweetness of the sweet-tasting protein, monellin, by using site-directed mutagenesis and a Pichia pastoris expression system with a GAPDH constitutive promoter.

Results

Both wild-type and E2 N mutant of single-chain monellin gene were cloned into the PGAPZαA vector and expressed in Pichia pastoris. The majority of the secreted recombinant protein, at 0.15 g/l supernatant, was monellin. This was purified by Sephadex G50 chromatography. The sweetness threshold of wild-type and E2 N were 30 μg/ml and 20 μg/ml, respectively. Compared with the proteins expressed in Escherichia coli, the thermostability of both proteins was improved. The N-terminal sequence is determinative for the sweetness of the proteins expressed in yeast strains.

Conclusions

Site-directed mutagenesis, modification of the N-terminus of monellin, and without the need of methanol induction in P. pastoris expression system, indicate the possibility for large-scale production of this sweet-tasting protein.
  相似文献   

11.

Background

Diverse aquatic microorganisms are capable of colonizing living and non-living surfaces leading to the formation of biofilms. Commonly visualized as a slimy layer, these biofilms are filled with hundreds of other microorganisms compared to free living planktonic cells. Microbial surface colonization and surface-associated metabolic activities also exert several macroscale deleterious effects, including biofouling, biocorrosion and the persistence and transmission of harmful or pathogenic microorganisms and virulence determinants. The present study deals with the isolation and screening of marine bacteria for biofilm formation. The screened isolates were characterized and identified as Pychrobacter celer, Pychrobacter alimentarius and Kocuria rhizophila by 16S rRNA sequencing.

Methods

Biofilm forming bacteria were isolated by spread plate technique and subjected to screening by microtiter plate assay. The potent biofilm formers were identified by molecular characterization using 16S rRNA gene sequencing.

Results

Twelve bacterial isolates were obtained by pour plate technique and subjected to biofilm assay. Among the 12 isolates three isolates which showed maximum biofilm formation were subjected to molecular characterizationby 16S rRNA gene sequencing method. The isolates were identified as Pychrobacter celer, Pychrobacter alimentarius and Kocuria rhizophila. The EPS produced by the three biofilm forming bacteria was extracted and the protein and carbohydrate content determined.

Conclusion

Among the isolates screened, isolate 8 (Kocuria rhizophila) produced maximum protein and carbohydrate which was also in accordance with the results of microtiter plate assay.
  相似文献   

12.

Objective

To investigate the effects of heat-killed Enterococcus faecalis ATCC 29212 and P25RC clinical strain (derived from an obturated root canal with apical periodontitis) on osteoclast differentiation within an osteoblast/osteoclast co-culture system.

Results

Heat-killed E. faecalis significantly increased the proportion of multinucleated osteoclastic cells (MNCs) within the co-culture system. The IL-6 level was significantly increased upon exposure to heat-killed E. faecalis. Gene expression levels of NFATc1 and cathepsin K were significantly up-regulated compared to the untreated control. EphrinB2 and EphB4 expressions at both the mRNA and protein levels were also significantly upregulated compared to the untreated control.

Conclusions

Heat-killed E. faecalis can induce osteoclast differentiation within the osteoblast/osteoclast co-culture system in vitro, possibly through ephrinB2-EphB4 bidirectional signaling.
  相似文献   

13.

Background

Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum are able to infect horses. However, the extend to which Danish horses are infected and seroconvert due to these two bacteria is unknown. The aim of the present study was to evaluate the seroprevalence of B. burgdorferi sensu lato and A. phagocytophilum in Danish horses.

Methods

A total of 390 blood samples collected from all major regions of Denmark and with a geographical distribution corresponding to the density of the Danish horse population were analyzed. All samples were examined for the presence of antibodies against B. burgdorferi sensu lato and A. phagocytophilum by the use of the SNAP®4DX ® ELISA test.

Results

Overall, 29.0% of the horses were seropositive for B. burgdorferi sensu lato whereas 22.3% were seropositive for A. phagocytophilum.

Conclusions

Antibodies against B burgdorferi sensu lato and A. phagocytophilum are commonly found among Danish horses thus showing that Danish horses are frequently infected by these organisms.
  相似文献   

14.

Background

Neurofibromatosis type 1 (NF1) is a dominantly inherited tumor predisposition syndrome that targets the peripheral nervous system. It is caused by mutations of the NF1 gene which serve as a negative regulator of the cellular Ras/MAPK (mitogen-activated protein kinases) signaling pathway. Owing to the complexity in some parts of clinical diagnoses and the need for better understanding of its molecular relationships, a genetic characterization of this disorder will be helpful in the clinical setting.

Methods

In this study, we present a customized targeted gene panel of NF1/KRAS/BRAF/p53 and SPRED1 genes combined with Multiple Ligation-Dependent Probe Amplification analysis for the NF1 mutation screening in a cohort of patients clinically suspected as NF1.

Results

In this study, we identified 73 NF1 mutations and two BRAF novel variants from 100 NF1 patients who were suspected as having NF1. These genetic alterations are heterogeneous and distribute in a complicated way without clustering in either cysteine–serine-rich domain or within the GAP-related domain. We also detected fifteen multi-exon deletions within the NF1 gene by MLPA Analysis.

Conclusions

Our results suggested that a genetic screening using a NGS panel with high coverage of Ras–signaling components combined with Multiple Ligation-Dependent Probe Amplification analysis will enable differential diagnosis of patients with overlapping clinical features.
  相似文献   

15.

Background

The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol.

Results

We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization.

Conclusion

Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol.
  相似文献   

16.

Background

Regeneration is an important biological process for the restoration of organ mass, structure, and function after damage, and involves complex bio-physiological mechanisms including cell differentiation and immune responses. We constructed four regenerative protein-protein interaction (PPI) networks using dynamic models and AIC (Akaike’s Information Criterion), based on time-course microarray data from the regeneration of four zebrafish organs: heart, cerebellum, fin, and retina. We extracted core and organ-specific proteins, and proposed a recalled-blastema-like formation model to uncover regeneration strategies in zebrafish.

Results

It was observed that the core proteins were involved in TGF-β signaling for each step in the recalled-blastema-like formation model and TGF-β signaling may be vital for regeneration. Integrins, FGF, and PDGF accelerate hemostasis during heart injury, while Bdnf shields retinal neurons from secondary damage and augments survival during the injury response. Wnt signaling mediates the growth and differentiation of cerebellum and fin neural stem cells, potentially providing a signal to trigger differentiation.

Conclusion

Through our analysis of all four zebrafish regenerative PPI networks, we provide insights that uncover the underlying strategies of zebrafish organ regeneration.
  相似文献   

17.

Objectives

Identification of novel microbial factors contributing to plant protection against abiotic stress.

Results

The genome of plant growth-promoting bacterium Pseudomonas fluorescens FR1 contains a short mobile element encoding a novel type of extracellular polyhydroxybutyrate (PHB) polymerase (PhbC) associated with a type I secretion system. Genetic analysis using a phbC mutant strain and plants showed that this novel extracellular enzyme is related to the PHB production in planta and suggests that PHB could be a beneficial microbial compound synthesized during plant adaptation to cold stress.

Conclusion

Extracellular PhbC can be used as a new tool for improve crop production under abiotic stress.
  相似文献   

18.

Objectives

To characterize a recombinant carbonyl reductase from Saccharomyces cerevisiae (SceCPR1) and explore its use in asymmetric synthesis of (R)-pantolactone [(R)-PL].

Results

The NADPH-dependent SceCPR1 exhibited strict (R)-enantioselectivity and high activity in the asymmetric reduction of ketopantolactone (KPL) to (R)-PL. Escherichia coli, coexpressing SceCPR1 and glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), was constructed to fulfill efficient NADPH regeneration. During the whole-cell catalyzed asymmetric reduction of KPL, the spontaneous hydrolysis of KPL significantly affected the yield of (R)-PL, which was effectively alleviated by the employment of the substrate constant-feeding strategy. The established whole-cell bioreduction for 6 h afforded 458 mM (R)-PL with the enantiomeric excess value of >99.9% and the yield of 91.6%.

Conclusions

Escherichia coli coexpressing SceCPR1 and EsGDH efficiently catalyzed the asymmetric synthesis of (R)-PL through the substrate constant-feeding strategy.
  相似文献   

19.

Objectives

To explore Candida guilliermondii for the production of long-chain dicarboxylic acids (DCA), we performed metabolic pathway engineering aiming to prevent DCA consumption during β-oxidation, but also to increase its production via the ω-oxidation pathway.

Results

We identified the major β- and ω-oxidation pathway genes in C. guilliermondii and performed first steps in the strain improvement. A double pox disruption mutant was created that slowed growth with oleic acid but showed accelerated DCA degradation. Increase in DCA production was achieved by homologous overexpression of a plasmid borne cytochrome P450 monooxygenase gene.

Conclusion

C. guilliermondii is a promising biocatalyst for DCA production but further insight into its fatty acid metabolism is necessary.
  相似文献   

20.

Background

Fungi are constantly exposed to nitrogen limiting environments, and thus the efficient regulation of nitrogen metabolism is essential for their survival, growth, development and pathogenicity. To understand how the rice blast pathogen Magnaporthe oryzae copes with limited nitrogen availability, a global proteome analysis under nitrogen supplemented and nitrogen starved conditions was completed.

Methods

M. oryzae strain 70–15 was cultivated in liquid minimal media and transferred to media with nitrate or without a nitrogen source. Proteins were isolated and subjected to unfractionated gel-free based liquid chromatography-tandem mass spectrometry (LC-MS/MS). The subcellular localization and function of the identified proteins were predicted using bioinformatics tools.

Results

A total of 5498 M. oryzae proteins were identified. Comparative analysis of protein expression showed 363 proteins and 266 proteins significantly induced or uniquely expressed under nitrogen starved or nitrogen supplemented conditions, respectively. A functional analysis of differentially expressed proteins revealed that during nitrogen starvation nitrogen catabolite repression, melanin biosynthesis, protein degradation and protein translation pathways underwent extensive alterations. In addition, nitrogen starvation induced accumulation of various extracellular proteins including small extracellular proteins consistent with observations of a link between nitrogen starvation and the development of pathogenicity in M. oryzae.

Conclusion

The results from this study provide a comprehensive understanding of fungal responses to nitrogen availability.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号