首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang J  Zhang Z  Zhang XA  Luo Q 《BioTechniques》2010,49(5):817-821
Using nicking DNA endonuclease (NiDE), we developed a novel technique to clone DNA fragments into plasmids. We created a NiDE cassette consisting of two inverted NiDE substrate sites sandwiching an asymmetric four-base sequence, and NiDE cleavage resulted in 14-base single-stranded termini at both ends of the vector and insert. This method can therefore be used as a ligation-independent cloning strategy to generate recombinant constructs rapidly. In addition, we designed and constructed a simple and specific vector from an Escherichia coli plasmid back-bone to complement this cloning method. By cloning cDNAs into this modified vector, we confirmed the predicted feasibility and applicability of this cloning method.  相似文献   

2.
Ligation-independent cloning of PCR products (LIC-PCR).   总被引:25,自引:11,他引:14       下载免费PDF全文
A new procedure has been developed for the efficient cloning of complex PCR mixtures, resulting in libraries exclusively consisting of recombinant clones. Recombinants are generated between PCR products and a PCR-amplified plasmid vector. The procedure does not require the use of restriction enzymes, T4 DNA ligase or alkaline phosphatase. The 5'-ends of the primers used to generate the cloneable PCR fragments contain an additional 12 nucleotide (nt) sequence lacking dCMP. As a result, the amplification products include 12-nt sequences lacking dGMP at their 3'-ends. The 3'-terminal sequence can be removed by the action of the (3'----5') exonuclease activity of T4 DNA polymerase in the presence of dGTP, leading to fragments with 5'-extending single-stranded (ss) tails of a defined sequence and length. Similarly, the entire plasmid vector is amplified with primers homologous to sequences in the multiple cloning site. The vector oligos have additional 12-nt tails complementary to the tails used for fragment amplification, permitting the creation of ss-ends with T4 DNA polymerase in the presence of dCTP. Circularization can occur between vector molecules and PCR fragments as mediated by the 12-nt cohesive ends, but not in mixtures lacking insert fragments. The resulting circular recombinant molecules do not require in vitro ligation for efficient bacterial transformation. We have applied the procedure for the cloning of inter-ALU fragments from hybrid cell-lines and human cosmid clones.  相似文献   

3.
We have developed a novel coincidence cloning strategy, termed Coincidence Painting, which enables the rapid generation of large numbers of region specific sequences. Coincidence Painting utilises Degenerate Oligonucleotide Primed PCR (DOP-PCR) amplification of flow sorted derivative translocation chromosomes. The PCR products are hybridised in situ onto specific flow sorted chromosomes for coincident sequence selection. Eluted and reamplified material is then cloned using a novel insert end revelation and ligation technique. Cloned inserts range in size from 150-1300 bps of which approximately 54% appear to be single copy sequences. The cloning method permits the excision of vector free probe for library hybridisation screening and the small insert size facilitates analysis for the generation of sequence tagged sites (STSs). We have used such clones successfully for YAC screening by PCR and for cosmid screening by filter hybridisation. This new methodology should allow the rapid saturation with probes of regions defined by specific translocation breakpoints.  相似文献   

4.
We developed one-step sequence- and ligation-independent cloning (SLIC) as a simple, cost-effective, time-saving, and versatile cloning method. Highly efficient and directional cloning can be achieved by direct bacterial transformation 2.5 min after mixing any linearized vector, an insert(s) prepared by PCR, and T4 DNA polymerase in a tube at room temperature.  相似文献   

5.
Vector PCR.     
I B Runnebaum  P Syka  S Sukumar 《BioTechniques》1991,11(4):446-8, 450-2
A strategy employing PCR technology to facilitate the amplification of DNA segments inserted in plasmid vectors is described. Nine oligonucleotide primers specific for vector sequences bracketing cloning sites in seven commonly used vectors were designed. We used these primers for the amplification of 25 different inserts ranging in size from 0.4-4.8 kb. Vector PCR-generated products used as radiolabeled DNA probes in Southern hybridization compared favorably with conventionally prepared probes. This strategy was successfully applied to single colonies of bacteria containing recombinant plasmids for direct amplification of the plasmids insert from the bacterial lysate. Vector PCR enabled the production of microgram quantities of DNA from limited amounts of starting material without the time-consuming steps required for bacterial culture and purification of plasmid DNA. The amplification reaction is independent of the DNA segment to be amplified, rendering the method universally applicable.  相似文献   

6.
Positive selection vectors for high-fidelity PCR cloning   总被引:1,自引:0,他引:1  
Malo MS  Husain Z 《BioTechniques》2003,34(6):1250-1258
The power of PCR cloning of a target DNA fragment is limited by polymerase-induced mutations. While high-fidelity PCR products can be achieved by reducing the number of PCR cycles, the cloning of the very small amount of DNA thus amplified should give only a few recombinant clones (carrying an insert), which would be very difficult to screen from thousands of background false-positive clones generated by all the currently available vectors, including the positive selection vectors. False-positive clones are mostly generated by the recircularization of linearized vectors that have lost some bases at their ends due to digestion with contaminating exonuclease activities present in restriction enzymes, ligases, polymerases, and other reagents. To overcome this problem, two positive selection vectors, pRGR1Ap and pREM5Tc, have been developed, based on the principles of reporter gene reconstruction and regulatory element modulation, respectively. A PCR primer carrying a vector-specific sequence at its 5' end is used in PCR. When the resultant PCR products are ligated to the specific vector, an antibiotic resistance gene is expressed, thus donating positive selection capability to the harboring cells in a specific selection medium. These vectors cloned PCR fragments generated from less than a femtomole quantity of Escherichia coli genomic DNA after only three cycles of PCR amplification, thus greatly reducing the number of recombinant clones containing polymerase-induced mutations.  相似文献   

7.
Herein, we describe a novel cloning strategy for PCR-amplified DNA which employs the type IIs restriction endonuclease BsaI to create a linearized vector with four base-long 5′-overhangs, and T4 DNA polymerase treatment of the insert in presence of a single dNTP to create vector-compatible four base-long overhangs. Notably, the insert preparation does not require any restriction enzyme treatment. The BsaI sites in the vector are oriented in such a manner that upon digestion with BsaI, a stuffer sequence along with both BsaI recognition sequences is removed. The sequence of the four base-long overhangs produced by BsaI cleavage were designed to be non-palindromic, non-compatible to each other. Therefore, only ligation of an insert carrying compatible ends allows directional cloning of the insert to the vector to generate a recombinant without recreating the BsaI sites. We also developed rapid protocols for insert preparation and cloning, by which the entire process from PCR to transformation can be completed in 6–8 h and DNA fragments ranging in size from 200 to 2200 bp can be cloned with equal efficiencies. One protocol uses a single tube for insert preparation if amplification is performed using polymerases with low 3′-exonuclease activity. The other protocol is compatible with any thermostable polymerase, including those with high 3′-exonuclease activity, and does not significantly increase the time required for cloning. The suitability of this method for high-throughput cloning was demonstrated by cloning batches of 24 PCR products with nearly 100% efficiency. The cloning strategy is also suitable for high efficiency cloning and was used to construct large libraries comprising more than 108 clones/µg vector. Additionally, based on this strategy, a variety of vectors were constructed for the expression of proteins in E. coli, enabling large number of different clones to be rapidly generated.  相似文献   

8.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

9.
This paper describes the construction of 'Prime' cloning vectors, which include phage lambda and plasmid vectors useful for functional cloning in oocytes, yeast, and mammalian cells, and their use in a 'Prime' cloning system. The system takes advantage of the very active and precise 3' exonuclease activity of T4 DNA polymerase to produce single-stranded (ss) ends (cut-back) of vector and insert DNA. This results in the highly efficient directional cloning of cDNA and PCR-amplified DNA. The system obviates the need to digest insert DNA with a restriction endonuclease to unveil cloning sites, and thus eliminates the chance of internal digestion of the insert DNA. The cloning of PCR-amplified DNA, which is sometimes difficult, is made routine with this system. The 'Prime' sequence is included in vector cloning sites and cDNA and PCR primers. The 'Prime' sequence was chosen so that the ss sticky ends are nonpalindromic and will hybridize only to the appropriate partners. This makes cloning with the 'Prime' system very efficient, because neither the vector nor insert DNA is lost to unproductive self-hybridization.  相似文献   

10.
R S Haun  J Moss 《Gene》1992,112(1):37-43
A plasmid vector has been constructed that allows the ligation-independent cloning of cDNAs in any reading frame and directs their synthesis in Escherichia coli as glutathione S-transferase-linked fusion proteins. The cloning procedure does not require restriction enzyme digestion of the target sequence and does not introduce any additional sequences between the thrombin cleavage site and the foreign protein. Extended single-stranded tails complementary between the vector and insert, generated by the (3'----5') exonuclease activity of T4 DNA polymerase, obviate the need for in vitro ligation prior to bacterial transformation. This cloning procedure is rapid and highly efficient, and has been used successfully to construct a series of fusion proteins to investigate the sequence requirements for efficient thrombin cleavage.  相似文献   

11.

Background  

Molecular DNA cloning is crucial to many experiments and with the trend to higher throughput of modern approaches automated techniques are urgently required. We have established an automated, fast and flexible low-cost expression cloning approach requiring only vector and insert amplification by PCR and co-transformation of the products.  相似文献   

12.
Li MZ  Elledge SJ 《Nature methods》2007,4(3):251-256
We describe a new cloning method, sequence and ligation-independent cloning (SLIC), which allows the assembly of multiple DNA fragments in a single reaction using in vitro homologous recombination and single-strand annealing. SLIC mimics in vivo homologous recombination by relying on exonuclease-generated ssDNA overhangs in insert and vector fragments, and the assembly of these fragments by recombination in vitro. SLIC inserts can also be prepared by incomplete PCR (iPCR) or mixed PCR. SLIC allows efficient and reproducible assembly of recombinant DNA with as many as 5 and 10 fragments simultaneously. SLIC circumvents the sequence requirements of traditional methods and functions much more efficiently at very low DNA concentrations when combined with RecA to catalyze homologous recombination. This flexibility allows much greater versatility in the generation of recombinant DNA for the purposes of synthetic biology.  相似文献   

13.
In vivo cloning of PCR products in E. coli.   总被引:5,自引:0,他引:5       下载免费PDF全文
This report describes an efficient method to clone PCR products exploiting endogenous Escherichia coli enzymatic activities. PCR products are engineered to contain terminal sequences identical to sequences at the two ends of a linearized vector. PCR products and vector DNA are then simply co-transfected into E. coli strain JC8679, obviating the requirement for enzymatic treatment of the PCR product or in vitro ligation. The high rate of homologous recombination in this strain results in efficient incorporation of the insert into the vector, a process we refer to as in vivo cloning (IVC).  相似文献   

14.
This article describes the construction of a set of versatile expression vectors based on the In-Fusion™ cloning enzyme and their use for high-throughput cloning and expression screening. Modifications to commonly used vectors rendering them compatible with In-Fusion™ has produced a ligation-independent cloning system that is (1) insert sequence independent (2) capable of cloning large PCR fragments (3) efficient over a wide (20-fold) insert concentration range and (4) applicable to expression in multiple hosts. The system enables the precise engineering of (His6-) tagged constructs with no undesirable vector or restriction-site-derived amino acids added to the expressed protein. The use of a multiple host-enabled vector allows rapid screening in both E. coli and eukaryotic hosts (HEK293T cells and insect cell hosts, e.g. Sf9 cells). These high-throughput screening activities have prompted the development and validation of automated protocols for transfection of mammalian cells and Ni-NTA protein purification.  相似文献   

15.
Universal restriction site-free cloning method using chimeric primers   总被引:1,自引:0,他引:1  
Chen GJ  Qiu N  Page MP 《BioTechniques》2002,32(3):516, 518-516, 520
A universal restriction site-free cloning method has been developed to precisely insert a DNA fragment into a vector at any desired location without altering any nucleotide(s) in either the DNA fragment or the vector. The technique employs two pairs of chimeric primers, each containing a ribonucleotide. One pair of primers is used to amplify a target DNA fragment and another is used to prepare a linear vector. The ribonucleotide is used as a specific site for cleavage promoted by rare-earth metal ions such as La3+ or Lu3+. Therefore, blunt-ended PCR products can be converted into a dsDNA with single-stranded 3'overhangs for efficient ligation. The primers are designed so that both the target DNA fragment and vector PCR products create defined 3' overhangs to permit the formation of a seamless plasmid during the subsequent ligation. This method has been used successfully to clone the E. coli gene coding for peptidyl-tRNA hydrolase.  相似文献   

16.
We have developed an oligonucleotide-mediated cloning technique based on homologous recombination in Saccharomyces cerevisiae that allows precise DNA sequences to be transferred independent of restriction enzymes and PCR. In this procedure, linear DNA sequences are targeted to a chosen site in a yeast vector by DNA linkers, which consist of two partially overlapping oligonucleotides. The linkers contain relatively short regions of both yeast vector sequences and insert sequences, which stimulate homologous recombination between the vector and the insert. The linkers can also contain sequences not found in either the vector or the insert (e.g., sequences that encode ribosome binding sites, epitope tags, preferred codons, etc.), thus allowing modification of the transferred DNA. Linkers can be designed such that DNA sequences can be transferred with just two reusable universal oligonucleotides and two gene-specific oligonucleotides. This cloning method, which is performed by co-transforming yeast with linear vector, substrate DNA, and unannealed oligonucleotides, has been termed the yeast-based, oligonucleotide-mediated gap repair technique (YOGRT).  相似文献   

17.
In its basic concept, in vitro DNA amplification by the polymerase chain reaction (PCR) is restricted to those instances in which segments of known sequence flank the fragment to be amplified. Recently, techniques have been developed for amplification of unknown DNA sequences. These techniques, however, are dependent on the presence of suitable restriction endonuclease sites. Here, we describe a strategy for PCR amplification of DNA that lies outside the boundaries of known sequence. It is based on the use of one specific primer, homologous to the known sequence, and one semi-random primer. Restriction sites in the 5' proximal regions of both primers allow for cloning of the amplified DNA in a suitable sequencing vector or any other vector. It was shown by sequence analysis that the cloned DNA fragments represent contiguous DNA fragments that are flanked at one side by the sequence of the specific primer. When omitting the semi-random primer, a single clone was obtained, which originated from PCR amplification of target DNA by the specific primer in both directions.  相似文献   

18.
Oster CJ  Phillips GJ 《Plasmid》2011,66(3):180-185
Several ligation-independent cloning methods have been developed that offer advantages for construction of recombinant plasmids at high efficiency while minimizing cloning artifacts. Here we report new plasmid vectors that use the nicking endonuclease Nt.BspQI to generate extended single stranded tails for direct cloning of PCR products. The vectors include pLacCOs1, a ColE1-derivative plasmid imparting resistance to ampicillin, which allows facile construction of lacZ translational fusions and pKanCOs1, a pSC101-derivative cloning vector that imparts resistance to kanamycin, for cloning of PCR amplicons from genomic DNA as well as from ampicillin-based plasmids. We have successfully used these plasmids to directionally clone and characterize bacterial promoters that exhibit temperature regulated expression, as well as for cloning a variety of PCR products. In all cases, constructs with the correct configurations were generated at high efficiency and with a minimal number of manipulations. The cloning vectors can also be easily modified to incorporate additional reporter genes or to express epitope-tagged gene products.  相似文献   

19.
20.
Spiliotis M 《PloS one》2012,7(4):e35407
Inverse fusion PCR cloning (IFPC) is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号