首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain-computer interfaces (BCIs) translate oscillatory electroencephalogram (EEG) patterns into action. Different mental activities modulate spontaneous EEG rhythms in various ways. Non-stationarity and inherent variability of EEG signals, however, make reliable recognition of modulated EEG patterns challenging. Able-bodied individuals who use a BCI for the first time achieve - on average - binary classification performance of about 75%. Performance in users with central nervous system (CNS) tissue damage is typically lower. User training generally enhances reliability of EEG pattern generation and thus also robustness of pattern recognition. In this study, we investigated the impact of mental tasks on binary classification performance in BCI users with central nervous system (CNS) tissue damage such as persons with stroke or spinal cord injury (SCI). Motor imagery (MI), that is the kinesthetic imagination of movement (e.g. squeezing a rubber ball with the right hand), is the "gold standard" and mainly used to modulate EEG patterns. Based on our recent results in able-bodied users, we hypothesized that pair-wise combination of "brain-teaser" (e.g. mental subtraction and mental word association) and "dynamic imagery" (e.g. hand and feet MI) tasks significantly increases classification performance of induced EEG patterns in the selected end-user group. Within-day (How stable is the classification within a day?) and between-day (How well does a model trained on day one perform on unseen data of day two?) analysis of variability of mental task pair classification in nine individuals confirmed the hypothesis. We found that the use of the classical MI task pair hand vs. feed leads to significantly lower classification accuracy - in average up to 15% less - in most users with stroke or SCI. User-specific selection of task pairs was again essential to enhance performance. We expect that the gained evidence will significantly contribute to make imagery-based BCI technology become accessible to a larger population of users including individuals with special needs due to CNS damage.  相似文献   

2.
Wang Y  Wang YT  Jung TP 《PloS one》2012,7(5):e37665
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters.  相似文献   

3.
In this study we compared tactile and visual feedbacks for the motor imagery-based brain–computer interface (BCI) in five healthy subjects. A vertical green bar from the center of the fixing cross to the edge of the screen was used as visual feedback. Vibration motors that were placed on the forearms of the right and the left hands and on the back of the subject’s neck were used as tactile feedback. A vibration signal was used to confirm the correct classification of the EEG patterns of the motor imagery of right and left hand movements and the rest task. The accuracy of recognition in the classification of the three states (right hand movement, left hand movement, and rest) in the BCI without feedback exceeded the random level (33% for the three states) for all the subjects and was rather high (67.8% ± 13.4% (mean ± standard deviation)). Including the visual and tactile feedback in the BCI did not significantly change the mean accuracy of recognition of mental states for all the subjects (70.5% ± 14.8% for the visual feedback and 65.9% ± 12.4% for the tactile feedback). The analysis of the dynamics of the movement imagery skill in BCI users with the tactile and visual feedback showed no significant differences between these types of feedback. Thus, it has been found that the tactile feedback can be used in the motor imagery-based BCI instead of the commonly used visual feedback, which greatly expands the possibilities of the practical application of the BCI.  相似文献   

4.
For individuals with high degrees of motor disability or locked-in syndrome, it is impractical or impossible to use mechanical switches to interact with electronic devices. Brain computer interfaces (BCIs) can use motor imagery to detect interaction intention from users but lack the accuracy of mechanical switches. Hence, there exists a strong need to improve the accuracy of EEG-based motor imagery BCIs attempting to implement an on/off switch. Here, we investigate how monitoring the pupil diameter of a person as a psycho-physiological parameter in addition to traditional EEG channels can improve the classification accuracy of a switch-like BCI. We have recently noticed in our lab (work not yet published) how motor imagery is associated with increases in pupil diameter when compared to a control rest condition. The pupil diameter parameter is easily accessible through video oculography since most gaze tracking systems report pupil diameter invariant to head position. We performed a user study with 30 participants using a typical EEG based motor imagery BCI. We used common spatial patterns to separate motor imagery, signaling movement intention, from a rest control condition. By monitoring the pupil diameter of the user and using this parameter as an additional feature, we show that the performance of the classifier trying to discriminate motor imagery from a control condition improves over the traditional approach using just EEG derived features. Given the limitations of EEG to construct highly robust and reliable BCIs, we postulate that multi-modal approaches, such as the one presented here that monitor several psycho-physiological parameters, can be a successful strategy in making BCIs more accurate and less vulnerable to constraints such as requirements for long training sessions or high signal to noise ratio of electrode channels.  相似文献   

5.
《IRBM》2022,43(2):107-113
Background and objectiveAn important task of the brain-computer interface (BCI) of motor imagery is to extract effective time-domain features, frequency-domain features or time-frequency domain features from the raw electroencephalogram (EEG) signals for classification of motor imagery. However, choosing an appropriate method to combine time domain and frequency domain features to improve the performance of motor imagery recognition is still a research hotspot.MethodsIn order to fully extract and utilize the time-domain and frequency-domain features of EEG in classification tasks, this paper proposed a novel dual-stream convolutional neural network (DCNN), which can use time domain signal and frequency domain signal as the inputs, and the extracted time-domain features and frequency-domain features are fused by linear weighting for classification training. Furthermore, the weight can be learned by the DCNN automatically.ResultsThe experiments based on BCI competition II dataset III and BCI competition IV dataset 2a showed that the model proposed by this study has better performance than other conventional methods. The model used time-frequency signal as the inputs had better performance than the model only used time-domain signals or frequency-domain signals. The accuracy of classification was improved for each subject compared with the models only used one signals as the inputs.ConclusionsFurther analysis shown that the fusion weight of different subject is specifically, adjusting the weight coefficient automatically is helpful to improve the classification accuracy.  相似文献   

6.
The task of discriminating the motor imagery of different movements within the same limb using electroencephalography (EEG) signals is challenging because these imaginary movements have close spatial representations on the motor cortex area. There is, however, a pressing need to succeed in this task. The reason is that the ability to classify different same-limb imaginary movements could increase the number of control dimensions of a brain-computer interface (BCI). In this paper, we propose a 3-class BCI system that discriminates EEG signals corresponding to rest, imaginary grasp movements, and imaginary elbow movements. Besides, the differences between simple motor imagery and goal-oriented motor imagery in terms of their topographical distributions and classification accuracies are also being investigated. To the best of our knowledge, both problems have not been explored in the literature. Based on the EEG data recorded from 12 able-bodied individuals, we have demonstrated that same-limb motor imagery classification is possible. For the binary classification of imaginary grasp and elbow (goal-oriented) movements, the average accuracy achieved is 66.9%. For the 3-class problem of discriminating rest against imaginary grasp and elbow movements, the average classification accuracy achieved is 60.7%, which is greater than the random classification accuracy of 33.3%. Our results also show that goal-oriented imaginary elbow movements lead to a better classification performance compared to simple imaginary elbow movements. This proposed BCI system could potentially be used in controlling a robotic rehabilitation system, which can assist stroke patients in performing task-specific exercises.  相似文献   

7.
针对目前多分类运动想象脑电识别存在特征提取单一、分类准确率低等问题,提出一种多特征融合的四分类运动想象脑电识别方法来提高识别率。对预处理后的脑电信号分别使用希尔伯特-黄变换、一对多共空间模式、近似熵、模糊熵、样本熵提取结合时频—空域—非线性动力学的初始特征向量,用主成分分析降维,最后使用粒子群优化支持向量机分类。该算法通过对国际标准数据集BCI2005 Data set IIIa中的k3b受试者数据经MATLAB仿真处理后获得93.30%的识别率,均高于单一特征和其它组合特征下的识别率。分别对四名实验者实验采集运动想象脑电数据,使用本研究提出的方法处理获得了72.96%的平均识别率。结果表明多特征融合的特征提取方法能更好的表征运动想象脑电信号,使用粒子群支持向量机可取得较高的识别准确率,为人脑的认知活动提供了一种新的识别方法。  相似文献   

8.
The auditory Brain-Computer Interface (BCI) using electroencephalograms (EEG) is a subject of intensive study. As a cue, auditory BCIs can deal with many of the characteristics of stimuli such as tone, pitch, and voices. Spatial information on auditory stimuli also provides useful information for a BCI. However, in a portable system, virtual auditory stimuli have to be presented spatially through earphones or headphones, instead of loudspeakers. We investigated the possibility of an auditory BCI using the out-of-head sound localization technique, which enables us to present virtual auditory stimuli to users from any direction, through earphones. The feasibility of a BCI using this technique was evaluated in an EEG oddball experiment and offline analysis. A virtual auditory stimulus was presented to the subject from one of six directions. Using a support vector machine, we were able to classify whether the subject attended the direction of a presented stimulus from EEG signals. The mean accuracy across subjects was 70.0% in the single-trial classification. When we used trial-averaged EEG signals as inputs to the classifier, the mean accuracy across seven subjects reached 89.5% (for 10-trial averaging). Further analysis showed that the P300 event-related potential responses from 200 to 500 ms in central and posterior regions of the brain contributed to the classification. In comparison with the results obtained from a loudspeaker experiment, we confirmed that stimulus presentation by out-of-head sound localization achieved similar event-related potential responses and classification performances. These results suggest that out-of-head sound localization enables us to provide a high-performance and loudspeaker-less portable BCI system.  相似文献   

9.
This work describes a generalized method for classifying motor-related neural signals for a brain-computer interface (BCI), based on a stochastic machine learning method. The method differs from the various feature extraction and selection techniques employed in many other BCI systems. The classifier does not use extensive a-priori information, resulting in reduced reliance on highly specific domain knowledge. Instead of pre-defining features, the time-domain signal is input to a population of multi-layer perceptrons (MLPs) in order to perform a stochastic search for the best structure. The results showed that the average performance of the new algorithm outperformed other published methods using the Berlin BCI IV (2008) competition dataset and was comparable to the best results in the Berlin BCI II (2002–3) competition dataset. The new method was also applied to electroencephalography (EEG) data recorded from five subjects undertaking a hand squeeze task and demonstrated high levels of accuracy with a mean classification accuracy of 78.9% after five-fold cross-validation. Our new approach has been shown to give accurate results across different motor tasks and signal types as well as between subjects.  相似文献   

10.
Wheelchair control requires multiple degrees of freedom and fast intention detection, which makes electroencephalography (EEG)-based wheelchair control a big challenge. In our previous study, we have achieved direction (turning left and right) and speed (acceleration and deceleration) control of a wheelchair using a hybrid brain–computer interface (BCI) combining motor imagery and P300 potentials. In this paper, we proposed hybrid EEG-EOG BCI, which combines motor imagery, P300 potentials, and eye blinking to implement forward, backward, and stop control of a wheelchair. By performing relevant activities, users (e.g., those with amyotrophic lateral sclerosis and locked-in syndrome) can navigate the wheelchair with seven steering behaviors. Experimental results on four healthy subjects not only demonstrate the efficiency and robustness of our brain-controlled wheelchair system but also indicate that all the four subjects could control the wheelchair spontaneously and efficiently without any other assistance (e.g., an automatic navigation system).  相似文献   

11.
《IRBM》2022,43(3):198-209
BackgroundFrequency band optimization improves the performance of common spatial pattern (CSP) in motor imagery (MI) tasks classification because MI-related electroencephalograms (EEGs) are highly frequency specific. Many variants of CSP algorithm divided the EEG into various sub bands and then applied CSP. However, the feature dimension of MI-EEG data increases with addition of frequency sub bands and requires efficient feature selection algorithms. The performance of CSP also depends on filtering techniques.MethodIn this study, we designed a dual tree complex wavelet transform based filter bank to filter the EEG into sub bands, instead of traditional filtering methods, which improved the spatial feature extraction efficiency. Further, after filtering EEG into different sub bands, we extracted spatial features from each sub band using CSP and optimized them by a proposed supervised learning framework based on neighbourhood component analysis (NCA). Subsequently, a support vector machine (SVM) is trained to perform classification.ResultsAn experimental study, conducted on two datasets (BCI Competition IV (Dataset 2b), and BCI competition III (Dataset IIIa)), validated the MI classification effectiveness of the proposed method in comparison with standard algorithms such as CSP, Filter bank CSP (CSP), and Discriminative FBCSP (DFBCSP). The average classification accuracy obtained by the proposed method for BCI Competition IV (Dataset 2b), and BCI Competition III (Dataset IIIa) are 84.02 ± 12.2 and 89.1 ± 7.50, respectively and found significant than that achieved by standard methods.ConclusionAchieved superior results suggest that the proposed algorithm can improve the performance of MI-based Brain-computer interface devices.  相似文献   

12.
Electroencephalogram (EEG) is generally used in brain–computer interface (BCI), including motor imagery, mental task, steady-state evoked potentials (SSEPs) and P300. In order to complement existing motor-based control paradigms, this paper proposed a novel imagery mode: speech imagery. Chinese characters are monosyllabic and one Chinese character can express one meaning. Thus, eight Chinese subjects were required to read two Chinese characters in mind in this experiment. There were different shapes, pronunciations and meanings between two Chinese characters. Feature vectors of EEG signals were extracted by common spatial patterns (CSP), and then these vectors were classified by support vector machine (SVM). The accuracy between two characters was not superior. However, it was still effective to distinguish whether subjects were reading one character in mind, and the accuracies were between 73.65% and 95.76%. The results were better than vowel speech imagery, and they were suitable for asynchronous BCI. BCI systems will be also extended from motor imagery to combine motor imagery and speech imagery in the future.  相似文献   

13.
Most EEG-based brain-computer interface (BCI) paradigms include specific electrode positions. As the structures and activities of the brain vary with each individual, contributing channels should be chosen based on original records of BCIs. Phase measurement is an important approach in EEG analyses, but seldom used for channel selections. In this paper, the phase locking and concentrating value-based recursive feature elimination approach (PLCV-RFE) is proposed to produce robust-EEG channel selections in a P300 speller. The PLCV-RFE, deriving from the phase resetting mechanism, measures the phase relation between EEGs and ranks channels by the recursive strategy. Data recorded from 32 electrodes on 9 subjects are used to evaluate the proposed method. The results show that the PLCV-RFE substantially reduces channel sets and improves recognition accuracies significantly. Moreover, compared with other state-of-the-art feature selection methods (SSNRSF and SVM-RFE), the PLCV-RFE achieves better performance. Thus the phase measurement is available in the channel selection of BCI and it may be an evidence to indirectly support that phase resetting is at least one reason for ERP generations.  相似文献   

14.
For Brain-Computer Interface (BCI) systems that are designed for users with severe impairments of the oculomotor system, an appropriate mode of presenting stimuli to the user is crucial. To investigate whether multi-sensory integration can be exploited in the gaze-independent event-related potentials (ERP) speller and to enhance BCI performance, we designed a visual-auditory speller. We investigate the possibility to enhance stimulus presentation by combining visual and auditory stimuli within gaze-independent spellers. In this study with N = 15 healthy users, two different ways of combining the two sensory modalities are proposed: simultaneous redundant streams (Combined-Speller) and interleaved independent streams (Parallel-Speller). Unimodal stimuli were applied as control conditions. The workload, ERP components, classification accuracy and resulting spelling speed were analyzed for each condition. The Combined-speller showed a lower workload than uni-modal paradigms, without the sacrifice of spelling performance. Besides, shorter latencies, lower amplitudes, as well as a shift of the temporal and spatial distribution of discriminative information were observed for Combined-speller. These results are important and are inspirations for future studies to search the reason for these differences. For the more innovative and demanding Parallel-Speller, where the auditory and visual domains are independent from each other, a proof of concept was obtained: fifteen users could spell online with a mean accuracy of 87.7% (chance level <3%) showing a competitive average speed of 1.65 symbols per minute. The fact that it requires only one selection period per symbol makes it a good candidate for a fast communication channel. It brings a new insight into the true multisensory stimuli paradigms. Novel approaches for combining two sensory modalities were designed here, which are valuable for the development of ERP-based BCI paradigms.  相似文献   

15.
Han  Li  Liang  Zhang  Jiacai  Zhang  Changming  Wang  Li  Yao  Xia  Wu  Xiaojuan  Guo 《Cognitive neurodynamics》2015,9(2):103-112
A reactive brain-computer interface using electroencephalography (EEG) relies on the classification of evoked ERP responses. As the trial-to-trial variation is evitable in EEG signals, it is a challenge to capture the consistent classification features distribution. Clustering EEG trials with similar features and utilizing a specific classifier adjusted to each cluster can improve EEG classification. In this paper, instead of measuring the similarity of ERP features, the brain states during image stimuli presentation that evoked N1 responses were used to group EEG trials. The correlation between momentary phases of pre-stimulus EEG oscillations and N1 amplitudes was analyzed. The results demonstrated that the phases of time–frequency points about 5.3 Hz and 0.3 s before the stimulus onset have significant effect on the ERP classification accuracy. Our findings revealed that N1 components in ERP fluctuated with momentary phases of EEG. We also further studied the influence of pre-stimulus momentary phases on classification of N1 features. Results showed that linear classifiers demonstrated outstanding classification performance when training and testing trials have close momentary phases. Therefore, this gave us a new direction to improve EEG classification by grouping EEG trials with similar pre-stimulus phases and using each to train unit classifiers respectively.  相似文献   

16.
This paper proposes Bayesian approach to classification of EEG patterns on the basis of imaginary movements of extremities based on analysis ofcovariance matrices of native EEG recordings. An efficacy of a Brain-Computer Interface (BCI) based on the proposed classifier is evaluated. Bayesian classifier is shown to be competitive with the MCSP (Multiclass Common Spatial Patterns) classifier known from the literature as one of the efficient variant for BCI implementation. The influence of eye movement and blinking artifacts on the BCI performance is investigated. It is shown that the presence of such artifacts does not affect the classification accuracy.  相似文献   

17.
An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.  相似文献   

18.
Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain–computer interface research.  相似文献   

19.
Brain-computer interfaces (BCIs) are systems that use real-time analysis of neuroimaging data to determine the mental state of their user for purposes such as providing neurofeedback. Here, we investigate the feasibility of a BCI based on speech perception. Multivariate pattern classification methods were applied to single-trial EEG data collected during speech perception by native and non-native speakers. Two principal questions were asked: 1) Can differences in the perceived categories of pairs of phonemes be decoded at the single-trial level? 2) Can these same categorical differences be decoded across participants, within or between native-language groups? Results indicated that classification performance progressively increased with respect to the categorical status (within, boundary or across) of the stimulus contrast, and was also influenced by the native language of individual participants. Classifier performance showed strong relationships with traditional event-related potential measures and behavioral responses. The results of the cross-participant analysis indicated an overall increase in average classifier performance when trained on data from all participants (native and non-native). A second cross-participant classifier trained only on data from native speakers led to an overall improvement in performance for native speakers, but a reduction in performance for non-native speakers. We also found that the native language of a given participant could be decoded on the basis of EEG data with accuracy above 80%. These results indicate that electrophysiological responses underlying speech perception can be decoded at the single-trial level, and that decoding performance systematically reflects graded changes in the responses related to the phonological status of the stimuli. This approach could be used in extensions of the BCI paradigm to support perceptual learning during second language acquisition.  相似文献   

20.
《IRBM》2022,43(4):317-324
Brain-computer interface (BCI) speller is a system that provides an alternative communication for the disable people. The brain wave is translated into machine command through a BCI speller which can be used as a communication medium for the patients to express their thought without any motor movement. A BCI speller aims to spell characters by using the electroencephalogram (EEG) signal. Several types of BCI spellers are available based on the EEG signal. A standard BCI speller system consists of the following elements: BCI speller paradigm, data acquisition system and signal processing algorithms. In this work, a systematic review is provided on the BCI speller system and it includes speller paradigms, feature extraction, feature optimization and classification techniques for BCI speller. The advantages and limitations of different speller paradigm and machine learning algorithms are discussed in this article. Also, the future research directions are discussed which can overcome the limitations of present state-of-the-art techniques for BCI speller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号