首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 278 毫秒
1.
Antifreeze proteins (AFPs) are found in cold-adapted organisms and have the unusual ability to bind to and inhibit the growth of ice crystals. However, the underlying molecular basis of their ice-binding activity is unclear because of the difficulty of studying the AFP-ice interaction directly and the lack of a common motif, domain or fold among different AFPs. We have formulated a generic ice-binding model and incorporated it into a physicochemical pattern-recognition algorithm. It successfully recognizes ice-binding surfaces for a diverse range of AFPs, and clearly discriminates AFPs from other structures in the Protein Data Bank. The algorithm was used to identify a novel AFP from winter rye, and the antifreeze activity of this protein was subsequently confirmed. The presence of a common and distinct physicochemical pattern provides a structural basis for unifying AFPs from fish, insects and plants.  相似文献   

2.
Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 310-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins.  相似文献   

3.
Alanine-rich α-helical (type I) antifreeze proteins (AFPs) are produced by a variety of fish species from three different orders to protect against freezing in icy seawater. Interspersed amongst and within these orders are fishes making AFPs that are completely different in both sequence and structure. The origin of this variety of types I, II, III and antifreeze glycoproteins (AFGPs) has been attributed to adaptation following sea-level glaciations that occurred after the divergence of most of the extant families of fish. The presence of similar types of AFPs in distantly related fishes has been ascribed to lateral gene transfer in the case of the structurally complex globular type II lectin-like AFPs and to convergent evolution for the AFGPs, which consist of a well-conserved tripeptide repeat. In this paper, we examine the genesis of the type I AFPs, which are intermediate in complexity. These predominantly α-helical peptides share many features, such as putative capping structures, Ala-richness and amphipathic character. We have added to the type I repertoire by cloning additional sequences from sculpin and have found that the similarities between the type I AFPs of the four distinct groups of fishes are not borne out at the nucleotide level. Both the non-coding sequences and the codon usage patterns are strikingly different. We propose that these AFPs arose via convergence from different progenitor helices with a weak affinity for ice and that their similarity is dictated by the propensity of specific amino acids to form helices and to align water on one side of the helix into an ice-like pattern.  相似文献   

4.
Some creatures living in extremely low temperatures can produce some special materials called “antifreeze proteins” (AFPs), which can prevent the cell and body fluids from freezing. AFPs are present in vertebrates, invertebrates, plants, bacteria, fungi, etc. Although AFPs have a common function, they show a high degree of diversity in sequences and structures. Therefore, sequence similarity based search methods often fails to predict AFPs from sequence databases. In this work, we report a random forest approach “AFP-Pred” for the prediction of antifreeze proteins from protein sequence. AFP-Pred was trained on the dataset containing 300 AFPs and 300 non-AFPs and tested on the dataset containing 181 AFPs and 9193 non-AFPs. AFP-Pred achieved 81.33% accuracy from training and 83.38% from testing. The performance of AFP-Pred was compared with BLAST and HMM. High prediction accuracy and successful of prediction of hypothetical proteins suggests that AFP-Pred can be a useful approach to identify antifreeze proteins from sequence information, irrespective of their sequence similarity.  相似文献   

5.
Antifreeze proteins (AFPs) designate a class of proteins that are able to bind to and inhibit the growth of macromolecular ice. These proteins have been characterized from a variety of organisms. Recently, the structures of AFPs from the spruce budworm (Choristoneura fumiferana) and the yellow mealworm (Tenebrio molitor) have been determined by NMR and X-ray crystallography. Despite nonhomologous sequences, both proteins were shown to consist of beta-helices. We review the structures and dynamics data of these two insect AFPs to bring insight into the structure-function relationship and explore their beta-helical architecture. For the spruce budworm protein, the fold is a left-handed beta-helix with 15 residues per coil. The Tenebrio molitor protein consists of a right-handed beta-helix with 12 residues per coil. Mutagenesis and structural studies show that the insect AFPs present a highly rigid array of threonine residues and bound water molecules that can effectively mimic the ice lattice. Comparisons of the newly determined ryegrass and carrot AFP sequences have led to models suggesting that they might also consist of beta-helices, and indicate that the beta-helix might be used as an AFP structural motif in nonfish organisms.  相似文献   

6.
Antifreeze proteins (AFPs) prevent the growth of ice, and are used by some organisms that live in sub-zero environments for protection against freezing. All AFPs are thought to function by an adsorption inhibition process. In order to elucidate the ice-binding mechanism, the structures of several AFPs have been determined, and have been shown to consist of different folds. Recently, the first structures of the highly active insect AFPs have been characterized. These proteins have a beta-helix structure, which adds yet another fold to the AFP family. The 90-residue spruce budworm (Choristoneura fumiferana) AFP consists of a beta-helix with 15 residues per coil. The structure contains two ranks of aligned threonine residues (known as the TXT motif), which were shown by mutagenesis experiments to be located in the ice-binding face. In our previous NMR study of this AFP at 30 degrees C, we found that the TXT face was not optimally defined because of the broadening of NMR resonances potentially due to weak oligomerization. We present here a structure of spruce budworm AFP determined at 5 degrees C, where this broadening is reduced. In addition, the 1H-15N NMR dynamics of the protein were examined at 30 degrees C and 5 degrees C. The results show that the spruce budworm AFP is more structured at 5 degrees C, and support the general observation that AFPs become more rigid as the temperature is lowered.  相似文献   

7.
Antifreeze proteins (AFPs) inhibit the growth of ice, whereas ice-nucleation proteins (INPs) promote its formation. Although the structures of several AFPs are known, the structure of INP has been modeled thus far because of the difficulty in determining membrane protein structures. Here, we present a novel model of an INP structure from Pseudomonas syringae based on comparison with two newly determined insect AFP structures. The results suggest that both this class of AFPs and INPs may have a similar beta-helical fold and that they could interact with water through the repetitive TXT motif. By theoretical arguments, we show that the distinguishing feature between an ice inhibitor and an ice nucleator lies in the size of the ice-interacting surface. For INPs, the larger surface area acts as a template that is larger than the critical ice embryo surface area required for growth. In contrast, AFPs are small enough so that they bind to ice and inhibit further growth without acting as a nucleator.  相似文献   

8.
目的:从常温土壤中筛选冷适应微生物,并进行初步鉴定和产低温酶分析。方法:采集吉首大学校园内土壤样品,通过低温富集培养筛选冷适应微生物;通过形态观察、生理生化特性检测和基于16S rRNA基因序列的系统发育分析,对分离的菌株进行初步鉴定;利用平板筛选法检测其产低温酶特性。结果:分离获得6株耐冷细菌JSBP-1~JSBP-6,初步鉴定其分属假单胞菌属(Pseudomonas)、紫色杆菌属(Janthinobacterium)和节杆菌属(Arthrobacter);在5℃和15℃培养条件下,菌株JSBP-1产蛋白酶能力较强,JSBP-2和JSBP-6产淀粉酶能力较强,JSBP-5仅在5℃条件下有较强的产脂肪酶特性。结论:常温土壤中存在一定数量的冷适应微生物,其中假单胞菌是其优势菌群之一。这类适冷微生物菌群具有潜在的生产低温酶能力。  相似文献   

9.
In order to survive under extremely cold environments, many organisms produce antifreeze proteins (AFPs). AFPs inhibit the growth of ice crystals and protect organisms from freezing damage. Fish AFPs can be classified into five distinct types based on their structures. Here we report the structure of herring AFP (hAFP), a Ca(2+)-dependent fish type II AFP. It exhibits a fold similar to the C-type (Ca(2+)-dependent) lectins with unique ice-binding features. The 1.7 A crystal structure of hAFP with bound Ca(2+) and site-directed mutagenesis reveal an ice-binding site consisting of Thr96, Thr98 and Ca(2+)-coordinating residues Asp94 and Glu99, which initiate hAFP adsorption onto the [10-10] prism plane of the ice lattice. The hAFP-ice interaction is further strengthened by the bound Ca(2+) through the coordination with a water molecule of the ice lattice. This Ca(2+)-coordinated ice-binding mechanism is distinct from previously proposed mechanisms for other AFPs. However, phylogenetic analysis suggests that all type II AFPs evolved from the common ancestor and developed different ice-binding modes. We clarify the evolutionary relationship of type II AFPs to sugar-binding lectins.  相似文献   

10.
鱼类抗冻蛋白的研究进展   总被引:15,自引:0,他引:15  
抗冻蛋白 (AFP)可非依数性地降低溶液冰点 ,对冷冻细胞和胚胎具有高效的保护作用。目前的研究表明 ,不同的鱼类抗冻蛋白尽管都具有降低冰点的活性 ,但在结构和组成上又存在有较大的差异。根据其结构和化学组成 ,一般将它们分为 4大类 :AFP I、AFP II、AFP III和AFP IV。抗冻蛋白的编码基因为基因组中多拷贝基因家族的成员 ,其基因表达在很大程度上要受到季节变化的影响。目前 ,普遍使用吸附抑制假说来解释AFP非依数性降低溶液冰点的分子机制 ,但不同类抗冻蛋白在降低溶液冰点时的作用模式却不尽相同。现就鱼类的 4类抗冻蛋白的结构组成、基因性质、抗冻机制及其在细胞和胚胎冻存中的作用等领域的研究进展进行概括性综述  相似文献   

11.
Antifreeze proteins/polypeptides (AFPs), which are found in diverse species of marine fish, are grouped into four distinct classes (types I-IV). The discovery of skin-specific type I AFPs established that this class contains distinct isoforms, liver-type and skin-type, which are encoded by separate gene families. In this study, type I AFPs were isolated and partially characterized from skin tissues of Atlantic snailfish (Liparis atlanticus) and cunner (Tautogolabrus adspersus). Interestingly, evidence from this study indicates that snailfish type I AFPs synthesized in skin tissues are identical to those circulating in their blood plasma. Furthermore, type II AFPs that are identical to those expressed in liver for export into blood were purified from sea raven (Hemitripterus americanus) skin tissue extracts. It is clear that epithelial tissues are an important source for antifreeze expression to enhance the complement of AFPs that protect fish from freezing in extreme cold environments. In addition, the evidence generated in this study demonstrates that expression of AFPs in fish skin is a widespread phenomenon that is not limited to type I proteins.  相似文献   

12.
Tartaglia LJ  Shain DH 《Gene》2008,423(2):135-141
Glacier ice worms, Mesenchytraeus solifugus and related species, are the only known annelids that survive obligately in glacier ice and snow. One fundamental component of cold temperature adaptation is the ability to polymerize tubulin, which typically depolymerizes at low physiological temperatures (e.g., <10 degrees C) in most temperate species. In this study, we isolated two alpha-tubulin (Msalpha1, Msalpha2) and two beta-tubulin (Msbeta1, Msbeta2) subunits from an ice worm cDNA library, and compared their predicted amino acid sequences with homologues from other cold-adapted organisms (e.g., Antarctic fish, ciliate) in an effort to identify species-specific amino acid substitutions that contribute to cold temperature-dependent tubulin polymerization. Our comparisons and predicted protein structures suggest that ice worm-specific amino acid substitutions stabilize lateral contact associations, particularly between beta-tubulin protofilaments, but these substitutions occur at different positions in comparison with other cold-adapted tubulins. The ice worm tubulin gene family appears relatively small, comprising one primary alpha- and one primary beta-tubulin monomers, though minor isoforms and psuedogenes were identified. Our analyses suggest that variation occurs in the strategies (i.e., species-specific amino acid substitutions, gene number) by which cold-adapted taxa have evolved the ability to polymerize tubulin at low physiological temperatures.  相似文献   

13.
Antifreeze proteins (AFPs) are known to polypeptide components formed by certain plants, animals, fungi and bacteria which support to survive in sub-zero temperature. Current study highlighted the seven different antifreeze proteins of fish Ocean pout (Zoarces americanus), in which protein (amino acids sequence) were collected from National Centre for Biotechnology Information and finely characterized using several in silico tools. Such biocomputational techniques applied to figure out the physicochemical, functional and conformational characteristics of targeted AFPs. Multiple physicochemical properties such as Isoelectric Point, Extinction Coefficient and Instability Index, Aliphatic Index, Grand Average Hydropathy were calculated and analysed by ExPASy-ProtParam prediction web server. EMBOSS: pepwheel online tool was used to represent the protein sequences in a helical form. The primary structure analysis shows that most of the AFPs are hydrophobic in nature due to the high content of non-polar residues. The secondary structure of these proteins was calculated using SOPMA tool. SOSUI server and CYS_REC program also run for ideal prediction of transmembrane helices and disulfide bridges of experimental proteins respectively. The modelling of 3D structures of seven desired AFPs were executed by the homology modelling programmes; SWISS MODEL and ProSA web server. UCSF Chimera, Antheprot 3D, PyMOL and RAMPAGE were used to visualize and analysis of the structural variation of the predicted protein model. MEGA7.0.9 software used to know the phylogenetic relationship among these AFPs. These models offered excellent and reliable baseline information for functional characterization of the experimentally derived protein domain composition by using the advanced tools and techniques of Computational Biology.  相似文献   

14.
Fishes living in icy seawater are usually protected from freezing by endogenous antifreeze proteins (AFPs) that bind to ice crystals and stop them from growing. The scattered distribution of five highly diverse AFP types across phylogenetically disparate fish species is puzzling. The appearance of radically different AFPs in closely related species has been attributed to the rapid, independent evolution of these proteins in response to natural selection caused by sea level glaciations within the last 20 million years. In at least one instance the same type of simple repetitive AFP has independently originated in two distant species by convergent evolution. But, the isolated occurrence of three very similar type II AFPs in three distantly related species (herring, smelt and sea raven) cannot be explained by this mechanism. These globular, lectin-like AFPs have a unique disulfide-bonding pattern, and share up to 85% identity in their amino acid sequences, with regions of even higher identity in their genes. A thorough search of current databases failed to find a homolog in any other species with greater than 40% amino acid sequence identity. Consistent with this result, genomic Southern blots showed the lectin-like AFP gene was absent from all other fish species tested. The remarkable conservation of both intron and exon sequences, the lack of correlation between evolutionary distance and mutation rate, and the pattern of silent vs non-silent codon changes make it unlikely that the gene for this AFP pre-existed but was lost from most branches of the teleost radiation. We propose instead that lateral gene transfer has resulted in the occurrence of the type II AFPs in herring, smelt and sea raven and allowed these species to survive in an otherwise lethal niche.  相似文献   

15.
很多越冬的生物会产生抗冻蛋白,这些抗冻蛋白能够吸附到冰晶的表面改变冰晶形态并抑制冰晶的生长.抗冻蛋白在很多生物体内都被发现,不同的抗冻蛋白结构差异非常大.目前的一些研究揭示了几种抗冻蛋白的结构,并提出了抗冻蛋白与冰晶的结合模型,但是还没有一种机制能解释所有抗冻蛋白的作用机理.抗冻蛋白能被广泛的应用到农业、水产业和低温储藏器官、组织和细胞,利用转基因技术提高植物的抗冻性具有重要应用价值.而抗冻蛋白基因的表达调控则有待进一步阐明.  相似文献   

16.
李文轲  马春森 《生命科学》2012,(10):1089-1097
抗冻蛋白(antifreezeproteins,AFPs)可以通过抑制冰晶生长保护生物体免受低温冻害,具有重要的生物学意义和应用价值。现在在鱼类、节肢动物、植物及微生物中均发现有AFPs的存在。基于对已有研究文献和相关网络数据的系统调查统计,详细描述了AFPs数据的类别特征,并对其作用机理的研究历史和最新取得的突破性进展作了较为系统的阐述,并对AFPs预测所取得的成果作了介绍,还对AFPs研究的现状和未来研究方向作了讨论和展望。  相似文献   

17.
Structural rationalizations for differences in catalytic efficiency and stability between mesophilic and cold-adapted trypsins have been suggested from a detailed comparison of eight trypsin structures. Two trypsins, from Antarctic fish and Atlantic cod, have been constructed by homology modeling techniques and compared with six existing X-ray structures of both cold-adapted and mesophilic trypsins. The structural analysis focuses on the cold trypsin residue determinants found in a more extensive comparison of 27 trypsin sequences, and reveals a number of structural features unique to the cold-adapted trypsins. The increased substrate affinity of the psychrophilic trypsins is probably achieved by a lower electrostatic potential of the S1 binding pocket particularly arising from Glu221B, and from the lack of five hydrogen bonds adjacent to the catalytic triad. The reduced stability of the cold trypsins is expected to arise from reduced packing in two distinct core regions, fewer interdomain hydrogen bonds and from a destabilized C-terminal alpha-helix. The helices of the cold trypsins lack four hydrogen bonds and two salt-bridges, and they have poorer van der Waals packing interactions to the body of the molecule, compared to the mesophilic counterparts.  相似文献   

18.
抗冻蛋白结构与抗冻机制   总被引:13,自引:0,他引:13  
抗冻蛋白(amifreeze proteins,AFPs)是20世纪60年代从极地鱼血淋巴中分离的一种大分子抗冻剂,迄今为止科学工作者已从陆地昆虫、植物、细菌和真菌等各类生物中分离到多种抗冻蛋白,并测得了它们的基因序列及一些晶体结构,近些年的工作主要集中在该类蛋白质抗冻机制的研究上。抗冻蛋白具有广泛的应用前景,它不但可以应用于食物的冷鲜贮存及移植器官的低温保存,还可通过转基因提高经济作物的抗冻能力。  相似文献   

19.
Antifreeze proteins (AFPs) have independently evolved in many organisms. AFPs act by binding to ice crystals, effectively lowering the freezing point. AFPs are often at high copy number in a genome and diversity exists between copies. Type III antifreeze proteins are found in Arctic and Antarctic eel pouts, and have previously been shown to evolve under positive selection. Here we combine molecular and proteomic techniques to understand the molecular evolution and diversity of Type III antifreeze proteins in a single individual Antarctic fish Lycodichthys dearborni. Our expressed sequence tag (EST) screen reveals that at least seven different AFP variants are transcribed, which are ultimately translated into five different protein isoforms. The isoforms have identical 66 base pair signal sequences and different numbers of subsequent ice-binding domains followed by a stop codon. Isoforms with one ice-binding unit (monomer), two units (dimer), and multiple units (multimer) were present in the EST library. We identify a previously uncharacterized protein dimer, providing further evidence that there is diversity between Type III AFP isoforms, perhaps driven by positive selection for greater thermal hysteresis. Proteomic analysis confirms that several of these isoforms are translated and present in the liver. Our molecular evolution study shows that paralogs have diverged under positive selection. We hypothesize that antifreeze protein diversity is an important contributor to depressing the serum freezing point.  相似文献   

20.
Heat shock protein 70 (HSP70) is one of the most abundant and best characterized heat shock protein family that consists of highly conserved stress proteins, expressed in response to stress, and plays crucial roles in environmental stress tolerance and adaptation. The present study was conducted to identify major types of genes under the HSP70 family and to quantify their expression pattern in heat- and cold-adapted Indian goats (Capra hircus) with respect to different seasons. Five HSP70 gene homologues to HSPA8, HSPA6, HSPA1A, HSPA1L, and HSPA2 were identified by gene-specific primers. The cDNA sequences showed high similarity to other mammals, and proteins have an estimated molecular weight of around 70 kDa. The expression of HSP70 genes was observed during summer and winter. During summer, the higher expression of HSPA8, HSPA6, and HSPA1A was observed, whereas the expression levels of HSPA1L and HSPA2 were found to be lower. It was also observed that the expression of HSPA1A and HSPA8 was higher during winter in both heat- and cold-adapted goats but downregulates in case of other HSPs. Therefore, both heat and cold stress induced the overexpression of HSP70 genes. An interesting finding that emerged from the study is the higher expression of HSP70 genes in cold-adapted goats during summer and in heat-adapted goats during winter. Altogether, the results indicate that the expression pattern of HSP70 genes is species- and breed-specific, most likely due to variations in thermal tolerance and adaptation to different climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号