首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), such as erlotinib and gefitinib, is a major clinical problem in the treatment of patients with non-small cell lung cancer (NSCLC). YM155 is a survivin small molecule inhibitor and has been demonstrated to induce cancer cell apoptosis and autophagy. EGFR-TKIs have been known to induce cancer cell autophagy. In this study, we showed that YM155 markedly enhanced the sensitivity of erlotinib to EGFR-TKI resistant NSCLC cell lines H1650 (EGFR exon 19 deletion and PTEN loss) and A549 (EGFR wild type and KRAS mutation) through inducing autophagy-dependent apoptosis and autophagic cell death. The effects of YM155 combined with erlotinib on apoptosis and autophagy inductions were more obvious than those of YM155 in combination with survivin knockdown by siRNA transfection, suggesting that YM155 induced autophagy and apoptosis in the NSCLC cells partially depend on survivin downregulation. Meanwhile, we found that the AKT/mTOR pathway is involved in modulation of survivin downregulation and autophagy induction caused by YM155. In addition, YM155 can induce DNA damage in H1650 and A549 cell lines. Moreover, combining erlotinib further augmented DNA damage by YM155, which were retarded by autophagy inhibitor 3MA, or knockdown of autophagy-related protein Beclin 1, revealing that YM155 induced DNA damage is autophagy-dependent. Similar results were also observed in vivo xenograft experiments. Therefore, combination of YM155 and erlotinib offers a promising therapeutic strategy in NSCLC with EGFR-TKI resistant phenotype.  相似文献   

2.
Although non-small cell lung cancer (NSCLC) tumors with activating mutations in the epidermal growth factor receptor (EGFR) are highly responsive to EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib, development of acquired resistance is almost inevitable. Statins show antitumor activity, but it is unknown whether they can reverse EGFR-TKIs resistance in NSCLC with the T790M mutation of EGFR. This study investigated overcoming resistance to EGFR-TKI using simvastatin. We demonstrated that addition of simvastatin to gefitinib enhanced caspase-dependent apoptosis in T790M mutant NSCLC cells. Simvastatin also strongly inhibited AKT activation, leading to suppression of β-catenin activity and the expression of its targets, survivin and cyclin D1. Both insulin treatment and AKT overexpression markedly increased p-β-catenin and survivin levels, even in the presence of gefitinib and simvastatin. However, inhibition of AKT by siRNA or LY294002 treatment decreased p-β-catenin and survivin levels. To determine the role of survivin in simvastatin-induced apoptosis of gefitinib-resistant NSCLC, we showed that the proportion of apoptotic cells following treatment with survivin siRNA and the gefitinib–simvastatin combination was greater than the theoretical additive effects, whereas survivin up-regulation could confer protection against gefitinib and simvastatin-induced apoptosis. Similar results were obtained in erlotinib and simvastatin-treated HCC827/ER cells. These findings suggest that survivin is a key molecule that renders T790M mutant NSCLC cells resistant to apoptosis induced by EGFR-TKIs and simvastatin. Overall, these data indicate that simvastatin may overcome EGFR-TKI resistance in T790M mutant NSCLCs via an AKT/β-catenin signaling-dependent down-regulation of survivin and apoptosis induction.  相似文献   

3.
Small molecule epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown promising activity in patients with non-small cell lung cancer (NSCLC). Gefitinib has been the first of these drugs to be licensed for third-line treatment of advanced NSCLC patients. More recently, erlotinib has been shown to be more effective than placebo in increasing overall survival (OAS) and has been approved for NSCLC patients after failure of chemotherapy. However, a large body of clinical and experimental evidence suggests that the benefit from these drugs is limited to a subgroup of patients. The availability of clinical or molecular criteria for predicting sensitivity to EGFR-TKIs is the most relevant issue for their correct use and for planning future research. Determination of EGFR expression is not sufficient to predict sensitivity to EGFR-TKIs. However, several clinical features (female gender, adenocarcinoma/bronchioloalveolar histotype, never-smoking status, Oriental Asian origin) are associated with major clinical responses. The identification of somatic mutations in the tyrosine kinase domain of the EGFR gene represents the most important molecular marker of sensitivity to EGFR-TKIs. These "activating" mutations can be found in a high proportion of gefitinib- or erlotinib-responding patients. However, clinical effectiveness might not be limited to patients carrying EGFR mutations, in which the objective response is probably the detectable effect of apoptosis induction in cancer cells. In fact, clinical efficacy with gefitinib or erlotinib is also observed in another subgroup of patients, in which a tumor growth delay, determined by a block in cancer cell proliferation, could induce a prolonged and clinically relevant disease stabilization.  相似文献   

4.
5.
Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR) mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs). However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2) or BIBW2992 (pan-TKI of EGFR family proteins). Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.  相似文献   

6.
7.
Aberrant activation of the hedgehog (Hh) signaling pathway has been implicated in the epithelial-to-mesenchymal transition (EMT) and cancer stem-like cell (CSC) maintenance; both processes can result in tumor progression and treatment resistance in several types of human cancer. Hh cooperates with the epidermal growth factor receptor (EGFR) signaling pathway in embryogenesis. We found that the Hh signaling pathway was silenced in EGFR-TKI-sensitive non-small-cell lung cancer (NSCLC) cells, while it was inappropriately activated in EGFR-TKI-resistant NSCLC cells, accompanied by EMT induction and ABCG2 overexpression. Upregulation of Hh signaling through extrinsic SHH exposure downregulated E-cadherin expression and elevated Snail and ABCG2 expression, resulting in gefitinib tolerance (P < 0.001) in EGFR-TKI-sensitive cells. Blockade of the Hh signaling pathway using the SMO antagonist SANT-1 restored E-cadherin expression and downregulate Snail and ABCG2 in EGFR-TKI-resistant cells. A combination of SANT-1 and gefitinib markedly inhibited tumorigenesis and proliferation in EGFR-TKI-resistant cells (P < 0.001). These findings indicate that hyperactivity of Hh signaling resulted in EGFR-TKI resistance, by EMT introduction and ABCG2 upregulation, and blockade of Hh signaling synergistically increased sensitivity to EGFR-TKIs in primary and secondary resistant NSCLC cells. E-cadherin expression may be a potential biomarker of the suitability of the combined application of an Hh inhibitor and EGFR-TKIs in EGFR-TKI-resistant NSCLCs.  相似文献   

8.
Clinical resistance to gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), in patients with lung cancer has been linked to acquisition of the T790M resistance mutation in activated EGFR or amplification of MET. Phosphatase and tensin homolog (PTEN) loss has been recently reported as a gefitinib resistance mechanism in lung cancer. The aim of this study was to evaluate the efficacy of radiotherapy in non‐small‐cell lung cancer (NSCLC) with acquired gefitinib resistance caused by PTEN deficiency to suggest radiotherapy as an alternative to EGFR TKIs. PTEN deficient‐mediated gefitinib resistance was generated in HCC827 cells, an EGFR TKI sensitive NSCLC cell line, by PTEN knockdown with a lentiviral vector expressing short hairpin RNA‐targeting PTEN. The impact of PTEN knockdown on sensitivity to radiation in the presence or absence of PTEN downstream signaling inhibitors was investigated. PTEN knockdown conferred acquired resistance not only to gefitinib but also to radiation on HCC827 cells. mTOR inhibitors alone failed to reduce HCC827 cell viability, regardless of PTEN expression, but ameliorated PTEN knockdown‐induced radioresistance. PTEN knockdown‐mediated radioresistance was accompanied by repression of radiation‐induced cytotoxic autophagy, and treatment with mTOR inhibitors released the repression of cytotoxic autophagy to overcome PTEN knockdown‐induced radioresistance in HCC827 cells. These results suggest that inhibiting mTOR signaling could be an effective strategy to radiosensitize NSCLC harboring the EGFR activating mutation that acquires resistance to both TKIs and radiotherapy due to PTEN loss or inactivation mutations. J. Cell. Biochem. 114: 1248–1256, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Gefitinib and erlotinib are potent EGFR tyrosine kinase inhibitors (potentially) useful for the treatment of non-small-cell lung cancer (NSCLC). Clinical responses, however, in NSCLC patients have been linked to the presence of certain activating mutations of EGFR. We used an ELISA-based biochemical assay to confirm the selective inhibitory efficacy of gefitinib and erlotinib on the activated mutant receptor. Our results are in line with the clinical observations providing evidence for the predictive power of the kinase assay. Four additional compounds were also investigated: CI-1033 and EKB-569 had dramatic inhibitory effects on all EGFR forms, whereas PD153035 and AG1478 were active on wild-type and activating mutant protein. In docking simulations with wild-type EGFR, our inhibitory data are in good agreement with the binding scores. These data confirm that anilinoquinazolines are good starting structures for the next generation of selective drugs against mutant EGFR, whereas CI-1033 and EKB-569 may represent advances for patients with both wild-type and anilinoquinazoline-resistant mutant tumors.  相似文献   

10.
Gefitinib and erlotinib are potent EGFR tyrosine kinase inhibitors (potentially) useful for the treatment of non-small-cell lung cancer (NSCLC). Clinical responses, however, in NSCLC patients have been linked to the presence of certain activating mutations of EGFR. We used an ELISA-based biochemical assay to confirm the selective inhibitory efficacy of gefitinib and erlotinib on the activated mutant receptor. Our results are in line with the clinical observations providing evidence for the predictive power of the kinase assay. Four additional compounds were also investigated: CI-1033 and EKB-569 had dramatic inhibitory effects on all EGFR forms, whereas PD153035 and AG1478 were active on wild-type and activating mutant protein. In docking simulations with wild-type EGFR, our inhibitory data are in good agreement with the binding scores. These data confirm that anilinoquinazolines are good starting structures for the next generation of selective drugs against mutant EGFR, whereas CI-1033 and EKB-569 may represent advances for patients with both wild-type and anilinoquinazoline-resistant mutant tumors.  相似文献   

11.
目的:探讨细胞自噬与非小细胞肺癌对Gefitinib耐药的相关性,寻找逆转非小细胞肺癌对Gefitinib耐药的新靶点。方法:以体外培养的人非小细胞肺癌Gefitinib敏感细胞PC-9与Gefitinib耐药细胞PC-9/GR为研究对象,通过MTT法检测Gefitinib对PC-9及PC-9/GR细胞存活率的影响;Western blot检测Gefitinib对PC-9及PC-9/GR细胞中自噬相关蛋白LC3的表达的影响;流式细胞术检测自噬诱导剂雷帕霉素和Gefitinib对PC-9/GR细胞凋亡率的影响。结果:PC-9/GR细胞Gefitinib IC50为PC-9细胞的200倍以上,具有非常明显的耐药性。PC-9/GR细胞中LC3II的表达显著低于PC-9/GR细胞(P0.05)。Rapamycin联合Gefitinib作用于PC-9/GR细胞可以明显提高其细胞凋亡率(P0.05)。结论:细胞自噬减弱与非小细胞肺癌对Gefitinib耐药有关,诱导细胞自噬可能逆转非小细胞肺癌对Gefitinib耐药。  相似文献   

12.
Protein kinase CK2 has diverse functions promoting and maintaining cancer phenotypes. We investigated the effect of CK2 inhibition in lung cancer cells with T790M-mediated resistance to the EGFR-TK inhibitor. Resistant sublines of PC-9 to gefitinib (PC-9/GR) and erlotinib (PC-9/ER) were established by previous study, and T790M secondary mutation was found in both resistant sublines. A decrease of EGFR by siRNA treatment effectively controlled the growth of resistant cells, thus suggesting that they still have EGFR-dependency. CX-4945, a potent and selective CK2 inhibitor, induced autophagy in PC-9/GR and PC-9/ER, and which was supported by the induction of autophagic vacuoles and microtubule-associated protein 1 light chain 3 (LC3) expression, and the increase of punctate fluorescent signals in resistant cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. However, the withdrawal of CX-4945 led to the recovery of cancer cells with autophagy. We found that the induction of autophagy by CX-4945 in both resistant cells was CK2 dependent by using small interfering RNA against CK2. The treatment with CX-4945 alone induced a minimal growth inhibition in resistant cells. However, combined treatment of CX-4945 and EGFR-TKI effectively inhibited cancer-cell proliferation and induced apoptosis. CX-4945 increased the translocation of EGFR from the cell surface into the autophagosome, subsequently leading to the decrease of EGFR while inhibition of autophagy by 3MA or Atg7-targeted siRNA pretreatment reduced the decrease of EGFR by CX-4945. Accordingly, apoptosis by a combination of CX-4945 and EGFR-TKI was suppressed by 3MA or Atg7-targeted siRNA pretreatment, thus suggesting that autophagosome-mediated EGFR down-regulation would have an important role regarding apoptotic cell death by EGFR-TKI. Combined treatment of the CK2 inhibitor and EGFR-TKI may be a promising strategy for overcoming T790M-mediated resistance.  相似文献   

13.
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), including gefitinib, are effective for non-small cell lung cancer (NSCLC) patients with EGFR mutations. However, these patients eventually develop resistance to EGFR-TKI. The goal of the present study was to investigate the involvement of autophagy in gefitinib resistance. We developed gefitinib-resistant cells (PC-9/gef) from PC-9 cells (containing exon 19 deletion EGFR) after long-term exposure in gefitinib. PC-9/gef cells (B4 and E3) were 200-fold more resistant to gefitinib than PC-9/wt cells. Compared with PC-9/wt cells, both PC-9/gefB4 and PC-9/gefE3 cells demonstrated higher basal LC3-II levels which were inhibited by 3-methyladenine (3-MA, an autophagy inhibitor) and potentiated by chloroquine (CQ, an inhibitor of autophagolysosomes formation), indicating elevated autophagy in PC-9/gef cells. 3-MA and CQ concentration-dependently inhibited cell survival of both PC-9wt and PC-9/gef cells, suggesting that autophagy may be pro-survival. Furthermore, gefitinib increased LC3-II levels and autolysosome formation in both PC-9/wt cells and PC-9/gef cells. In PC-9/wt cells, CQ potentiated the cytotoxicity by low gefitinib (3nM). Moreover, CQ overcame the acquired gefitinib resistance in PC-9/gef cells by enhancing gefitinib-induced cytotoxicity, activation of caspase 3 and poly (ADP-ribose) polymerase cleavage. Using an in vivo model xenografting with PC-9/wt and PC-9/gefB4 cells, oral administration of gefitinib (50 mg/kg) completely inhibited the tumor growth of PC-9/wt but not PC-9/gefB4cells. Combination of CQ (75 mg/kg, i.p.) and gefitinib was more effective than gefitinib alone in reducing the tumor growth of PC-9/gefB4. Our data suggest that inhibition of autophagy may be a therapeutic strategy to overcome acquired resistance of gefitinib in EGFR mutation NSCLC patients.  相似文献   

14.
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI) are strongly recommended for non-small-cell lung cancer (NSCLC) patients harbouring active EGFR mutations, while drug resistance makes exploring resistance mechanisms and seeking effective therapeutic strategies urgent endeavours. Thymidylate synthetase (TYMS or TS) is a dominant enzyme in thymidylate nucleotide metabolism. In this study, we found a positive correlation between TS expression and overall survival (OS) and disease-free survival (DFS) in lung adenocarcinoma. The examination of gene sets from 140 NSCLC patients received EGFR-TKI therapy demonstrated a negative correlation between high TS expression and the efficacy of EGFR-TKI therapy. 24 tissue specimens from NSCLC patients exhibited upregulated TS mRNA expression in NSCLC patients resistant to gefitinib. The NSCLC cell PC9 and HCC827 sensitive to gefitinib and relatively resistant PC9/GR and HCC827/GR cells were used to demonstrate the knockdown of TS restored the sensitivity of resistant cells to gefitinib. Furthermore, pemetrexed effectively suppressed TS-mediated thymidylate metabolism and induced ROS generation, DNA damage and cellular senescence, thereby hampering cancer progression and restoring sensitivity to gefitinib. Our findings illuminate the potential mechanism of TS-triggered gefitinib resistance and indicate inhibition of TS by pemetrexed can potentiate the effect of gefitinib in NSCLC. Pemetrexed combined with gefitinib has potent anti-progression potential in gefitinib-resistant NSCLC. This study suggests that NSCLC patients with both high TS expression and EGFR-driving mutations might benefit more from a combination strategy of EGFR-TKI and pemetrexed-based chemotherapy than EGFR-TKI monotherapy, which has profound clinical implications and therapeutic value.  相似文献   

15.
Gefitinib (Iressa®, ZD1839) is a small molecule inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. We report on an early cellular response to gefitinib that involves induction of functional autophagic flux in phenotypically diverse breast cancer cells that were sensitive (BT474 and SKBR3) or insensitive (MCF7-GFPLC3 and JIMT-1) to gefitinib. Our data show that elevation of autophagy in gefitinib-treated breast cancer cells correlated with downregulation of AKT and ERK1/2 signaling early in the course of treatment. Inhibition of autophagosome formation by BECLIN-1 or ATG7 siRNA in combination with gefitinib reduced the abundance of autophagic organelles and sensitized SKBR3 but not MCF7-GFPLC3 cells to cell death. However, inhibition of the late stage of gefitinib-induced autophagy with hydroxychloroquine (HCQ) or bafilomycin A1 significantly increased (p<0.05) cell death in gefitinib-sensitive SKBR3 and BT474 cells, as well as in gefitinib-insensitive JIMT-1 and MCF7-GFPLC3 cells, relative to the effects observed with the respective single agents. Treatment with the combination of gefitinib and HCQ was more effective (p<0.05) in delaying tumor growth than either monotherapy (p>0.05), when compared to vehicle-treated controls. Our results also show that elevated autophagosome content following short-term treatment with gefitinib is a reversible response that ceases upon removal of the drug. In aggregate, these data demonstrate that elevated autophagic flux is an early response to gefitinib and that targeting EGFR and autophagy should be considered when developing new therapeutic strategies for EGFR expressing breast cancers.  相似文献   

16.
Lung cancer is a common cause of cancer mortality in the world, largely due to the risk factor of tobacco smoking. The drug therapy at the molecular level includes targeting the epidermal growth factor receptor (EGFR) tyrosine kinase activity by using inhibitors, such as erlotinib (Tarceva) and gefitinib (Iressa). The heterogeneity of disease phenotypes and the somatic mutations presented in patient populations have a great impact on the efficacy of treatments using targeted personalized medicine. In this study, we report on basic physical and chemical properties of erlotinib and gefitinib in three different lung cancer tumor phenotypes, using MALDI instrumentation in imaging mode, providing spatial localization of drugs without chemical labeling. Erlotinib and gefitinib were analyzed in i) planocellular lung carcinoma, ii) adenocarcinoma and iii) large cell lung carcinoma following their deposition on the tissue surfaces by piezo-dispensing, using a controlled procedure. The importance of high-resolution sampling was crucial in order to accurately localize the EGFR tyrosine kinase inhibitors deposited in heterogeneous cancer tissue compartments. This is the first report on personalized drug characterization with localizations at a lateral resolution of 30μm, which allowed us to map these compounds at attomolar concentrations within the lung tumor tissue microenvironments.  相似文献   

17.
Non‐small cell lung cancer (NSCLC) patients carrying EGFR activating mutations treated with gefitinib, a tyrosine kinase inhibitor, will develop drug resistance. Ubiquitylation is one of major posttranslational modifications of proteins affecting the stability or function of proteins. However, the role of protein ubiquitylation in gefitinib resistance is poorly understood. To systematically identify the global change in protein expression and ubiquitylation during gefitinib resistance, a quantitative global proteome and ubiquitylome study in a pair of gefitinib‐resistant and sensitive NSCLC cells is carried out. Altogether, changes in expression of 3773 proteins are quantified, and changes in ubiquitylation of 2893 lysine sites in 1415 proteins are measured in both cells. Interestingly, lysosomal and endocytic pathways, which are involved in autophagy regulation, are enriched with upregulated proteins or ubiquitylated proteins in gefitinib‐resistant cells. In addition, HMGA2 overexpression or ALOX5 knockdown suppresses gefitinib resistance in NSCLC cells by inhibiting autophagy. Overall, these results reveal the previously unknown global ubiquitylome and proteomic features associated with gefitinib resistance, uncover the opposing roles of HMGA2 or ALOX5 in regulating gefitinib resistance and autophagy, and will help to identify new therapeutic targets in overcoming gefitinib resistance.  相似文献   

18.
Han W  Sun J  Feng L  Wang K  Li D  Pan Q  Chen Y  Jin W  Wang X  Pan H  Jin H 《PloS one》2011,6(12):e28491
Anthracycline daunorubicin (DNR) is one of the major antitumor agents widely used in the treatment of myeloid leukemia. Unfortunately, the clinical efficacy of DNR was limited because of its cytotoxity at high dosage. As a novel cytoprotective mechanism for tumor cell to survive under unfavorable conditions, autophagy has been proposed to play a role in drug resistance of tumor cells. Whether DNR can activate to impair the sensitivity of cancer cells remains unknown. Here, we first report that DNR can induce a high level of autophagy, which was associated with the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Moreover, cell death induced by DNR was greatly enhanced after autophagy inhibition by the pharmacological inhibitor chloroquine (CQ) and siRNAs targeting Atg5 and Atg7, the most important components for the formation of autophagosome. In conclusion, we found that DNR can induce cytoprotective autophagy by activation of ERK in myeloid leukemia cells. Autophagy inhibition thus represents a promising approach to improve the efficacy of DNR in the treatment of patients with myeloid leukemia.  相似文献   

19.
20.
Persistently activated IL‐6/STAT3 pathway promotes acquired resistance to targeted therapy with epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKIs) in non–small‐cell lung cancer (NSCLC) treatment. miR‐206 has been verified to be dysregulated and plays as a negative regulator in lung cancer. However, whether miR‐206 may overcome IL6‐induced gefitinib resistance in EGFR‐mutant lung cancer remains elusive. In this study, we investigated the role of miR‐206 in IL6‐induced gefitinib‐resistant EGFR‐mutated lung cancer cell lines. We showed that forced miR‐206 expression restored gefitinib sensitivity in IL6‐induced gefitinib‐resistant EGFR‐mutant lung cancer cells by inhibiting IL6/JAK1/STAT3 pathway. Specifically, mechanistic investigations revealed that miR‐206 blocked IL‐6/STAT3 signalling via directly targeting the 3'‐UTR of intracellular IL‐6 messenger RNA. Moreover, IL‐6 induced miR‐206 down‐regulation by reducing the cropping process of primary miR‐206 (pri‐miR‐206) into the Drosha/DGCR8 complex. Taken together, our findings reveal a direct role of miR‐206 in regulating IL‐6/STAT3 pathway and contrarily activated IL‐6/STAT3 signalling mediates the miR‐206 maturation process in gefitinib‐resistant EGFR‐mutant lung cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号