首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ubiquitin-like protein NEDD8 is essential for activity of SCF-like ubiquitin ligase complexes. Here we identify and characterize NEDP1, a human NEDD8-specific protease. NEDP1 is highly conserved throughout evolution and equivalent proteins are present in yeast, plants, insects, and mammals. Bacterially expressed NEDP1 is capable of processing NEDD8 in vitro to expose the diglycine motif required for conjugation and can deconjugate NEDD8 from modified substrates. NEDP1 appears to be specific for NEDD8 as neither ubiquitin nor SUMO bearing COOH-terminal extensions are utilized as substrates. Inhibition studies and mutagenesis indicate that NEDP1 is a cysteine protease with sequence similarities to SUMO-specific proteases and the class of viral proteases typified by the adenovirus protease. In vivo NEDP1 deconjugates NEDD8 from a wide variety of substrates including the cullin component of SCF-like complexes. Thus NEDP1 is likely to play an important role in ubiquitin-mediated proteolysis by controlling the activity of SCF complexes.  相似文献   

2.
The bacterial effector protein cycle inhibiting factor (CIF) converts glutamine 40 of NEDD8 to glutamate (Q40E), causing cytopathic effects and inhibiting cell proliferation. Although these have been attributed to blocking the functions of cullin-RING ubiquitin ligases, how CIF modulates NEDD8-dependent signaling is unclear. Here we use conditional NEDD8-dependent yeast to explore the effects of CIF on cullin neddylation. Although CIF causes cullin deneddylation and the generation of free NEDD8 Q40E, inhibiting the COP9 signalosome (CSN) allows Q40E to form only on NEDD8 attached to cullins. In the presence of the CSN, NEDD8 Q40E is removed from cullins more rapidly than NEDD8, leading to a decrease in steady-state cullin neddylation. As NEDD8 Q40E is competent for cullin conjugation in the absence of functional CSN and with overexpression of the NEDD8 ligase Dcn1, our data are consistent with NEDD8 deamidation causing enhanced deneddylation of cullins by the CSN. This leads to a dramatic change in the extent of activated cullin-RING ubiquitin ligases.  相似文献   

3.
Girdwood D  Robertson M  Gordon C 《FEBS letters》2012,586(10):1522-1528
In fission yeast, the only known essential function of Ned8p is the modification of the cullin, Pcu1p, and subsequent Cullin-RING-Ligase (CRL) activation and substrate ubiquitination. We show here that a functional Pcu1p mutant, deleted for its C-terminal autoinhibitory domain, which negates the requirement of neddylation for ligase activity, is unable to rescue the loss of neddylation. These findings suggest that the neddylation of non-cullin substrate(s) are required for Schizosaccharomyces pombe viability.  相似文献   

4.
Ubiquitin and UBL (ubiquitin-like) modifiers are small proteins that covalently modify other proteins to alter their properties or behaviours. Ubiquitin modification (ubiquitylation) targets many substrates, often leading to their proteasomal degradation. NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8) is the UBL most closely related to ubiquitin, and its best-studied role is the activation of CRLs (cullin-RING ubiquitin ligases) by its conjugation to a conserved C-terminal lysine residue on cullin proteins. The attachment of UBLs requires three UBL-specific enzymes, termed E1, E2 and E3, which are usually well insulated from parallel UBL pathways. In the present study, we report a new mode of NEDD8 conjugation (NEDDylation) whereby the UBL NEDD8 is linked to proteins by ubiquitin enzymes in vivo. We found that this atypical NEDDylation is independent of classical NEDD8 enzymes, conserved from yeast to mammals, and triggered by an increase in the NEDD8 to ubiquitin ratio. In cells, NEDD8 overexpression leads to this type of NEDDylation by increasing the concentration of NEDD8, whereas proteasome inhibition has the same effect by depleting free ubiquitin. We show that bortezomib, a proteasome inhibitor used in cancer therapy, triggers atypical NEDDylation in tissue culture, which suggests that a similar process may occur in patients receiving this treatment.  相似文献   

5.
Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity   总被引:12,自引:0,他引:12  
  相似文献   

6.
Members of the cullin and RING finger ROC protein families form heterodimeric complexes to constitute a potentially large number of distinct E3 ubiquitin ligases. We report here that the highly conserved C-terminal sequence in CUL1 is dually required, both for nuclear localization and for modification by NEDD8. Disruption of ROC1 binding impaired nuclear accumulation of CUL1 and decreased NEDD8 modification in vivo but had no effect on NEDD8 modification of CUL1 in vitro, suggesting that ROC1 promotes CUL1 nuclear accumulation to facilitate its NEDD8 modification. Disruption of NEDD8 binding had no effect on ROC1 binding, nor did it affect nuclear localization of CUL1, suggesting that nuclear localization and NEDD8 modification of CUL1 are two separable steps, with nuclear import preceding and required for NEDD8 modification. Disrupting NEDD8 modification diminishes the IkappaBalpha ubiquitin ligase activity of CUL1. These results identify a pathway for regulation of CUL1 activity-ROC1 and the CUL1 C-terminal sequence collaboratively mediate nuclear accumulation and NEDD8 modification, facilitating assembly of active CUL1 ubiquitin ligase. This pathway may be commonly utilized for the assembly of other cullin ligases.  相似文献   

7.
Cullin-based E3 ubiquitin ligases are activated through modification of the cullin subunit with the ubiquitin-like protein Nedd8. Dcn1 regulates cullin neddylation and thus ubiquitin ligase activity. Here we describe the 1.9 A X-ray crystal structure of yeast Dcn1 encompassing an N-terminal ubiquitin-binding (UBA) domain and a C-terminal domain of unique architecture, which we termed PONY domain. A conserved surface on Dcn1 is required for direct binding to cullins and for neddylation. The reciprocal binding site for Dcn1 on Cdc53 is located approximately 18 A from the site of neddylation. Dcn1 does not require cysteine residues for catalytic function, and directly interacts with the Nedd8 E2 Ubc12 on a surface that overlaps with the E1-binding site. We show that Dcn1 is necessary and sufficient for cullin neddylation in a purified recombinant system. Taken together, these data demonstrate that Dcn1 is a scaffold-like E3 ligase for cullin neddylation.  相似文献   

8.
The p50 subunit of NF-kappaB is generated by limited processing of the precursor p105. IkappaB kinase-mediated phosphorylation of the C-terminal domain of p105 recruits the SCF(beta-TrCP) ubiquitin ligase, resulting in rapid ubiquitination and subsequent processing/degradation of p105. NEDD8 is known to activate SCF ligases following modification of their cullin component. Here we show that NEDDylation is required for conjugation and processing of p105 by SCF(beta-TrCP) following phosphorylation of the molecule. In a crude extract, a dominant negative E2 enzyme, UBC12, inhibits both conjugation and processing of p105, and inhibition is alleviated by an excess of WT- UBC12. In a reconstituted cell-free system, ubiquitination of p105 was stimulated only in the presence of all three components of the NEDD8 pathway, E1, E2, and NEDD8. A Cul-1 mutant that cannot be NEDDylated could not stimulate ubiquitination and processing of p105. Similar findings were observed also in cells. It should be noted that NEDDylation is required only for the stimulated but not for basal processing of p105. Although the mechanisms that underlie processing of p105 are largely obscure, it is clear that NEDDylation and the coordinated activity of SCF(beta-TrCP) on both p105 and IkappaBalpha serve as an important regulatory mechanism controlling NF-kappaB activity.  相似文献   

9.
NEDD8 is a novel ubiquitin-like protein that has been shown to conjugate to nuclear proteins in a manner analogous to ubiquitination and sentrinization. Recently, human cullin-4A was reported to be conjugated by a single molecule of NEDD8. Here, we show that human cullin-2 is also conjugated by a single molecule of the NEDD8. The C-terminal 171-amino-acid residues in human cullin-2 are sufficient for NEDD8-conjugation. In addition, the equivalent C-terminal fragments of other cullins have been shown to be conjugated by NEDD8. Mapping of the NEDD8-conjugation site revealed that Lys-689 in human cullin-2 is conjugated by NEDD8. Interestingly, the Lys residue at position 689 in cullin-2 is conserved in all cullin family members, including human cullin-1, -2, -3, -4A, -4B, and -5 and yeast cullin (Cdc53), suggesting the possibility that other cullin family members are conjugated by NEDD8/Rub1 at a Lys residue of equivalent position.  相似文献   

10.
Cullins (CULs) are subunits of a prominent class of RING ubiquitin ligases. Whereas the subunits and substrates of CUL1-associated SCF complexes and CUL2 ubiquitin ligases are well established, they are largely unknown for other cullin family members. We show here that S. pombe CUL3 (Pcu3p) forms a complex with the RING protein Pip1p and all three BTB/POZ domain proteins encoded in the fission yeast genome. The integrity of the BTB/POZ domain, which shows similarity to the cullin binding proteins SKP1 and elongin C, is required for this interaction. Whereas Btb1p and Btb2p are stable proteins, Btb3p is ubiquitylated and degraded in a Pcu3p-dependent manner. Btb3p degradation requires its binding to a conserved N-terminal region of Pcu3p that precisely maps to the equivalent SKP1/F box adaptor binding domain of CUL1. We propose that the BTB/POZ domain defines a recognition motif for the assembly of substrate-specific RING/cullin 3/BTB ubiquitin ligase complexes.  相似文献   

11.
NEDD8/Rub1 is a ubiquitin (Ub)-like molecule that covalently ligates to target proteins through an enzymatic cascade analogous to ubiquitylation. This modifier is known to target all cullin (Cul) family proteins. The latter are essential components of Skp1/Cul-1/F-box protein (SCF)-like Ub ligase complexes, which play critical roles in Ub-mediated proteolysis. To determine the role of the NEDD8 system in mammals, we generated mice deficient in Uba3 gene that encodes a catalytic subunit of NEDD8-activating enzyme. Uba3(-/-) mice died in utero at the periimplantation stage. Mutant embryos showed selective apoptosis of the inner cell mass but not of trophoblastic cells. However, the mutant trophoblastic cells could not enter the S phase of the endoreduplication cycle. This cell cycle arrest was accompanied with aberrant expression of cyclin E and p57(Kip2). These results suggested that the NEDD8 system is essential for both mitotic and the endoreduplicative cell cycle progression. beta-Catenin, a mediator of the Wnt/wingless signaling pathway, which degrades continuously in the cytoplasm through SCF Ub ligase, was also accumulated in the Uba3(-/-) cytoplasm and nucleus. Thus, the NEDD8 system is essential for the regulation of protein degradation pathways involved in cell cycle progression and morphogenesis, possibly through the function of the Cul family proteins.  相似文献   

12.
E1 enzymes initiate ubiquitin-like protein (ubl) transfer cascades by catalyzing adenylation of the ubl's C terminus. An E1's selectivity for its cognate ubl is essential because the E1 subsequently coordinates the ubl with its correct downstream pathway. We report here the structure of the 120 kDa quaternary complex between human APPBP1-UBA3, a heterodimeric E1, its ubl NEDD8, and ATP. The E1 selectively recruits NEDD8 through a bipartite interface, involving a domain common to all ubl activating enzymes including bacterial ancestors, and also eukaryotic E1-specific sequences. By modeling ubiquitin into the NEDD8 binding site and performing mutational analysis, we identify a single conserved arginine in APPBP1-UBA3 that acts as a selectivity gate, preventing misactivation of ubiquitin by NEDD8's E1. NEDD8 residues that interact with E1 correspond to residues in ubiquitin important for binding the proteasome and other ubiquitin-interacting proteins, suggesting that the conjugation and recognition machineries have coevolved for each specific ubl.  相似文献   

13.
The evolutionarily conserved 8-kD protein NEDD8 (NEURAL PRECURSOR CELL EXPRESSED, DEVELOPMENTALLY DOWN-REGULATED8) belongs to the family of ubiquitin-like modifiers. Like ubiquitin, NEDD8 is conjugated to and deconjugated from target proteins. Many targets and functions of ubiquitylation have been described; by contrast, few targets of NEDD8 have been identified. In plants as well as in non-plant organisms, the cullin subunits of cullin-RING E3 ligases are NEDD8 conjugates with a demonstrated functional role for the NEDD8 modification. The existence of other non-cullin NEDD8 targets has generally been questioned. NEDD8 is translated as a precursor protein and proteolytic processing exposes a C-terminal glycine required for NEDD8 conjugation. In animals and yeast, DENEDDYLASE1 (DEN1) processes NEDD8. Here, we show that mutants of a DEN1 homolog from Arabidopsis thaliana have no detectable defects in NEDD8 processing but do accumulate a broad range of NEDD8 conjugates; this provides direct evidence for the existence of non-cullin NEDD8 conjugates. We further identify AUXIN RESISTANT1 (AXR1), a subunit of the heterodimeric NEDD8 E1 activating enzyme, as a NEDD8-modified protein in den1 mutants and wild type and provide evidence that AXR1 function may be compromised in the absence of DEN1 activity. Thus, in plants, neddylation may serve as a regulatory mechanism for cullin and non-cullin proteins.  相似文献   

14.
SCF (Skp1-cullin/Cdc53-F-box protein) ubiquitin ligases bind substrates via the variable F-box protein and, in conjunction with the RING domain protein Rbx1 and the ubiquitin-conjugating enzyme Ubc3/Cdc34, catalyze substrate ubiquitination. The cullin subunit can be modified covalently by conjugation of the ubiquitin-like protein Rub1/NEDD8 (neddylation) or bound noncovalently by the protein CAND1 (cullin-associated, neddylation-dissociated). Expression of the Candida albicans CAND1 gene homolog CaTIP120 in Saccharomyces cerevisiae is toxic only in the presence of CaCdc53, consistent with a specific interaction between CaTip120 and CaCdc53. To genetically analyze this system in C. albicans, we deleted the homologs of RUB1/NEDD8, TIP120/CAND1, and the deneddylase gene JAB1, and we also generated a temperature-sensitive allele of the essential CaCDC53 gene by knock-in site-directed mutagenesis. Deletion of CaRUB1 and CaTIP120 caused morphological, growth, and protein degradation phenotypes consistent with a reduction in SCF ubiquitin ligase activity. Furthermore, the double Carub1(-/-) Catip120(-/-) mutant was more defective in SCF activity than either individual deletion mutant. These results indicate that CAND1 stimulates SCF ubiquitin ligase activity and that it does so independently of neddylation. Our data do not support a role for CAND1 in the protection of either the F-box protein or cullin from degradation but are consistent with the suggested role of CAND1 in SCF complex remodeling.  相似文献   

15.
16.
The Nedd8 conjugation pathway is conserved from yeast to humans and is essential in many organisms. Nedd8 is conjugated to cullin proteins in a process that alters SCF E3 ubiquitin ligase activity, and it is presumed that Nedd8 deconjugation would reverse these effects. We now report the X-ray structures of the human Nedd8-specific protease, Den1, in a complex with the inhibitor Nedd8 aldehyde, thus revealing a model for the tetrahedral transition state intermediate generated during proteolysis. Although Den1 is closely related to the SUMO-specific protease family (Ulp/Senp family), structural analysis of the interface suggests determinants involved in Nedd8 selectivity by Den1 over other ubiquitin-like family members and suggests how the Ulp/Senp architecture has been modified to interact with different ubiquitin-like modifiers.  相似文献   

17.

Key Message

We show that DCN1 binds ubiquitin and RUB/NEDD8, associates with cullin, and is functionally conserved. DCN1 activity is required for pollen development transitions and embryogenesis, and for pollen tube growth.

Abstract

Plant proteomes show remarkable plasticity in reaction to environmental challenges and during developmental transitions. Some of this adaptability comes from ubiquitin-mediated protein degradation regulated by cullin-RING E3 ubiquitin ligases (CRLs). CRLs are activated through modification of the cullin subunit with the ubiquitin-like protein RUB/NEDD8 by an E3 ligase called DEFECTIVE IN CULLIN NEDDYLATION 1 (DCN1). Here we show that tobacco DCN1 binds ubiquitin and RUB/NEDD8 and associates with cullin. When knocked down by RNAi, tobacco pollen formation was affected and zygotic embryogenesis was blocked around the globular stage. Additionally, we found that RNAi of DCN1 inhibited the stress-triggered reprogramming of cultured microspores from their intrinsic gametophytic mode of development to an embryogenic state. This stress-induced developmental switch is a known feature in many important crops and leads ultimately to the formation of haploid embryos and plants. Compensating the RNAi effect by re-transformation with a promoter-silencing construct restored pollen development and zygotic embryogenesis, as well as the ability for stress-induced formation of embryogenic microspores. Overexpression of DCN1 accelerated pollen tube growth and increased the potential for microspore reprogramming. These results demonstrate that the biochemical function of DCN1 is conserved in plants and that its activity is involved in transitions during pollen development and embryogenesis, and for pollen tube growth.  相似文献   

18.
A ubiquitin-like modifier, NEDD8, is covalently attached to cullin-family proteins, but its physiological role is poorly understood. Here we report that the NEDD8-modifying pathway is essential for cell viability and function of Pcu1 (cullin-1 orthologue) in fission yeast. Pcu1 assembled on SCF ubiquitin-ligase was completely modified by NEDD8. Pcu1(K713R) defective for NEDD8 conjugation lost the ability to complement lethality due to pcu1 deletion. Forced expression of Pcu1(K713R) or depletion of NEDD8 in cells resulted in impaired cell proliferation and marked stabilization of the cyclin-dependent kinase inhibitor Rum1, which is a substrate of the SCF complex. Based on these findings, we propose that covalent modification of cullin-1 by the NEDD8 system plays an essential role in the function of SCF in fission yeast.  相似文献   

19.
20.
Ubiquitin and ubiquitin-like proteins use unique E1, E2, and E3 enzymes for conjugation to their substrates. We and others have recently reported that increases in the relative concentration of the ubiquitin-like protein NEDD8 over ubiquitin lead to activation of NEDD8 by the ubiquitin E1 enzyme. We now show that this results in erroneous conjugation of NEDD8 to ubiquitin substrates, such as p53, Caspase 7, and Hif1α, demonstrating that overexpression of NEDD8 is not appropriate for identification of substrates of the NEDD8 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号