首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In Drosophila, Slit at the midline activates Robo receptors on commissural axons, thereby repelling them out of the midline into distinct longitudinal tracts on the contralateral side of the central nervous system. In the vertebrate spinal cord, Robo1 and Robo2 are expressed by commissural neurons, whereas all three Slit homologs are expressed at the ventral midline. Previous analysis of Slit1;Slit2 double mutant spinal cords failed to reveal a defect in commissural axon guidance. We report here that when all six Slit alleles are removed, many commissural axons fail to leave the midline, while others recross it. In addition, Robo1 and Robo2 single mutants show guidance defects that reveal a role for these two receptors in guiding commissural axons to different positions within the ventral and lateral funiculi. These results demonstrate a key role for Slit/Robo signaling in midline commissural axon guidance in vertebrates.  相似文献   

2.
In the developing spinal cord, axons project in both the transverse plane, perpendicular to the floor plate, and in the longitudinal plane, parallel to the floor plate. For many axons, the floor plate is a source of long- and short-range guidance cues that govern growth along both dimensions. We show here that B-class transmembrane ephrins and their receptors are reciprocally expressed on floor plate cells and longitudinally projecting axons in the mouse spinal cord. During the period of commissural axon pathfinding, B-class ephrin protein is expressed at the lateral floor plate boundaries, at the interface between the floor plate and the ventral funiculus. In contrast, B-class Eph receptors are expressed on decussated commissural axon segments projecting within the ventral funiculus, and on ipsilaterally projecting axons constituting the lateral funiculus. Soluble forms of all three B-class ephrins bind to, and induce the collapse of, commissural growth cones in vitro. The collapse-inducing activity associated with B-class ephrins is likely to be mediated by EphB1. Taken together, these data support a possible role for repulsive B-class Eph receptor/ligand interactions in constraining the orientation of longitudinal axon projections at the ventral midline.  相似文献   

3.
During development, progenitors and post-mitotic neurons receive signals from adjacent territories that regulate their fate. The floor-plate is a group of glial cells lining the ependymal canal at ventral position. The floor-plate expresses key morphogens contributing to the patterning of cell lineages in the spinal cord. At later developmental stages, the floor-plate regulates the navigation of axons in the spinal cord, acting as a barrier to prevent the crossing of ipsilateral axons and controlling midline crossing by commissural axons1. These functions are achieved through the secretion of various guidance cues. Some of these cues act as attractants and repellents for the growing axons while others regulate guidance receptors and downstream signaling to modulate the sensitivity of the axons to the local guidance cues2,3. Here we describe a method that allows investigating the properties of floor-plate derived signals in a variety of developmental contexts, based on the production of Floor-Plate conditioned medium (FPcm)4-6. We then exemplify the use of this FPcm in the context of axon guidance. First, the spinal cord is isolated from mouse embryo at E12.5 and the floor-plate is dissected out and cultivated in a plasma-thrombin matrix (Figure 1). Second two days later, commissural tissue are dissected out from E12.5 embryos, triturated and exposed to the FPcm. Third, the tissue are processed for Western blot analysis of commissural markers.  相似文献   

4.
Longitudinal axons transmit all signals between the brain and spinal cord. Their axon tracts through the brain stem are established by a simple set of pioneer axons with precise trajectories parallel to the floor plate. To identify longitudinal guidance mechanisms in vivo, the overall role of floor plate tissue and the specific roles of Slit/Robo signals were tested. Ectopic induction or genetic deletion of the floor plate diverted longitudinal axons into abnormal trajectories. The expression patterns of the diffusible cues of the Slit family were altered in the floor plate experiments, suggesting their involvement in longitudinal guidance. Genetic tests of Slit1 and Slit2, and the Slit receptors Robo1 and Robo2 were carried out in mutant mice. Slit1;Slit2 double mutants had severe longitudinal errors, particularly for ventral axons, including midline crossing and wandering longitudinal trajectories. Robo1 and Robo2 were largely genetically redundant, and neither appeared to specify specific tract positions. However, combined Robo1 and Robo2 mutations strongly disrupted each pioneer tract. Thus, pioneer axons depend on long-range floor plate cues, with Slit/Robo signaling required for precise longitudinal trajectories.  相似文献   

5.
The Slit-Robo GTPase activating protein 3 (srGAP3) dynamically regulates cytoskeletal reorganisation through inhibition of the Rho GTPase Rac1 and interaction with actin remodelling proteins. SrGAP3-mediated reorganisation of the actin cytoskeleton is crucial for the normal development of dendritic spines and loss of srGAP3 leads to abnormal synaptic activity and impaired cognitive behaviours in mice, which is reminiscent of an association between disrupted srGAP3 and intellectual disability in humans. Additionally, srGAP3 has been implicated to act downstream of Slit-Robo signalling in commissural axons of the spinal cord. Thus, srGAP3-mediated cytoskeletal reorganisation has an important influence on a variety of neurodevelopmental processes, which may be required for normal cognitive function.  相似文献   

6.
Chen Z  Gore BB  Long H  Ma L  Tessier-Lavigne M 《Neuron》2008,58(3):325-332
Alternative splicing provides a means to increase the complexity of gene function in numerous biological processes, including nervous system wiring. Navigating axons switch responses from attraction to repulsion at intermediate targets, allowing them to grow to each intermediate target and then to move on. The mechanisms underlying this switch remain poorly characterized. We previously showed that the Slit receptor Robo3 is required for spinal commissural axons to enter and cross the midline intermediate target. We report here the existence of two functionally antagonistic isoforms of Robo3 with distinct carboxy termini arising from alternative splicing. Robo3.1 is deployed on the precrossing and crossing portions of commissural axons and allows midline crossing by silencing Slit repulsion. Robo3.2 becomes expressed on the postcrossing portion and blocks midline recrossing, favoring Slit repulsion. The tight spatial regulation of opponent splice variants helps ensure high-fidelity transition of axonal responses from attraction to repulsion at the midline.  相似文献   

7.
Crossing the midline: roles and regulation of Robo receptors   总被引:12,自引:0,他引:12  
In the Drosophila CNS, the midline repellent Slit acts at short range through its receptor Robo to control midline crossing. Longitudinal axons express high levels of Robo and avoid the midline; commissural axons that cross the midline express only low levels of Robo. Robo levels are in turn regulated by Comm. Here, we show that the Slit receptors Robo2 and Robo3 ensure the fidelity of this crossing decision: rare crossing errors occur in both robo2 and robo3 single mutants. In addition, low levels of either Robo or Robo2 are required to drive commissural axons through the midline: only in robo,robo2 double mutants do axons linger at the midline as they do in slit mutants. Robo2 and Robo3 levels are also tightly regulated, most likely by a mechanism similar to but distinct from the regulation of Robo by Comm.  相似文献   

8.
In vertebrate embryos, commissural axons extend toward and across the floor plate (FP), an intermediate target at the ventral midline (VM) of the spinal cord. After decussating, many commissural axons turn into the longitudinal plane and elaborate diverse projections. FP contact is thought to alter the responsiveness of these axons so that they can exit the FP and adopt new trajectories. However, a requirement for the FP in shaping contralateral commissural projections has not been established in higher vertebrates. Here we further analyze to what extent FP contact is necessary for the elaboration of decussated commissural projections both in cultured, FP-excised spinal cord preparations and in gli2-deficient mice, which lack a FP. In FP-lacking spinal cords, we observe a large number of appropriately projecting contralateral commissural projections in vivo and in vitro. Surprisingly, even though gli2 mutants lack a FP, slit1-3 mRNA and their receptors (Robo1/2) are expressed in a wild-type-like manner. In addition, blocking Robo-Slit interactions in FP-lacking spinal cord explants prevents commissural axons from leaving the VM and turning longitudinally. Thus, compared to FP contact, Slit-Robo interactions are more critical for driving commissural axons out of the VM and facilitating the elaboration of a subset of contralateral commissural projections.  相似文献   

9.
10.
K Wong  X R Ren  Y Z Huang  Y Xie  G Liu  H Saito  H Tang  L Wen  S M Brady-Kalnay  L Mei  J Y Wu  W C Xiong  Y Rao 《Cell》2001,107(2):209-221
The Slit protein guides neuronal and leukocyte migration through the transmembrane receptor Roundabout (Robo). We report here that the intracellular domain of Robo interacts with a novel family of Rho GTPase activating proteins (GAPs). Two of the Slit-Robo GAPs (srGAPs) are expressed in regions responsive to Slit. Slit increased srGAP1-Robo1 interaction and inactivated Cdc42. A dominant negative srGAP1 blocked Slit inactivation of Cdc42 and Slit repulsion of migratory cells from the anterior subventricular zone (SVZa) of the forebrain. A constitutively active Cdc42 blocked the repulsive effect of Slit. These results have demonstrated important roles for GAPs and Cdc42 in neuronal migration. We propose a signal transduction pathway from the extracellular guidance cue to intracellular actin polymerization.  相似文献   

11.
Zou Y  Stoeckli E  Chen H  Tessier-Lavigne M 《Cell》2000,102(3):363-375
Commissural axons cross the nervous system midline and then turn to grow alongside it, neither recrossing nor projecting back into ventral regions. In Drosophila, the midline repellent Slit prevents recrossing: axons cross once because they are initially unresponsive to Slit, becoming responsive only upon crossing. We show that commissural axons in mammals similarly acquire responsiveness to a midline repellent activity upon crossing. Remarkably, they also become responsive to a repellent activity from ventral spinal cord, helping explain why they never reenter that region. Several Slit and Semaphorin proteins, expressed in midline and/or ventral tissues, mimic these repellent activities, and midline guidance defects are observed in mice lacking neuropilin-2, a Semaphorin receptor. Thus, Slit and Semaphorin repellents from midline and nonmidline tissues may help prevent crossing axons from reentering gray matter, squeezing them into surrounding fiber tracts.  相似文献   

12.
Slit2-Mediated chemorepulsion and collapse of developing forebrain axons   总被引:15,自引:0,他引:15  
Diffusible chemorepellents play a major role in guiding developing axons toward their correct targets by preventing them from entering or steering them away from certain regions. Genetic studies in Drosophila revealed a novel repulsive guidance system that prevents inappropriate axons from crossing the CNS midline; this repulsive system is mediated by the Roundabout (Robo) receptor and its secreted ligand Slit. In rodents, Robo and Slit are expressed in the spinal cord and Slit can repel spinal motor axons in vitro. Here, we extend these findings into higher brain centers by showing that Robo1 and Robo2, as well as Slit1 and Slit2, are often expressed in complementary patterns in the developing forebrain. Furthermore, we show that human Slit2 can repel olfactory and hippocampal axons and collapse their growth cones.  相似文献   

13.
Recognition of the large secreted protein Slit by receptors of the Robo family provides fundamental signals in axon guidance and other developmental processes. In Drosophila, Slit-Robo signalling regulates midline crossing and the lateral position of longitudinal axon tracts. We report the functional dissection of Drosophila Slit, using structure analysis, site-directed mutagenesis and in vitro assays. The N-terminal region of Slit consists of a tandem array of four independently folded leucine-rich repeat (LRR) domains, connected by disulphide-tethered linkers. All three Drosophila Robos were found to compete for a single highly conserved site on the concave face of the second LRR domain of Slit. We also found that this domain is sufficient for biological activity in a chemotaxis assay. Other Slit activities may require Slit dimerisation mediated by the fourth LRR domain. Our results show that a small portion of Slit is able to induce Robo signalling and indicate that the distinct functions of Drosophila Robos are encoded in their divergent cytosolic domains.  相似文献   

14.
Directional migration of leukocytes is an essential step in leukocyte trafficking during inflammatory responses. However, the molecular mechanisms governing directional chemotaxis of leukocytes remain poorly understood. The Slit family of guidance cues has been implicated for inhibition of leuocyte migration. We report that Clara cells in the bronchial epithelium secreted Slit2, whereas eosinophils and neutrophils expressed its cell-surface receptor, Robo1. Compared to neutrophils, eosinophils exhibited a significantly lower level of Slit-Robo GTPase-activating protein 1 (srGAP1), leading to activation of Cdc42, recruitment of PI3K to Robo1, enhancment of eotaxin-induced eosinophil chemotaxis, and exaggeration of allergic airway inflammation. Notably, OVA sensitization elicited a Slit2 gradient at so-called bronchus-alveoli axis, with a higher level of Slit2 in the bronchial epithelium and a lower level in the alveolar tissue. Aerosol administration of rSlit2 accelerated eosinophil infiltration, whereas i.v. administered Slit2 reduced eosinophil deposition. In contrast, Slit2 inactivated Cdc42 and suppressed stromal cell-derived factor-1α-induced chemotaxis of neutrophils for inhibiting endotoxin-induced lung inflammation, which were reversed by blockade of srGAP1 binding to Robo1. These results indicate that the newly identified Slit2 gradient at the bronchus-alveoli axis induces attractive PI3K signaling in eosinophils and repulsive srGAP1 signaling in neutrophils through differential srGAP1 expression during lung inflammation.  相似文献   

15.
Commissural axons in vertebrates and insects are initially attracted to the nervous system midline, but once they reach this intermediate target they undergo a dramatic switch, becoming responsive to repellent Slit proteins at the midline, which expel them onto the next leg of their trajectory. We have unexpectedly implicated a divergent member of the Robo family, Rig-1 (or Robo3), in preventing premature Slit sensitivity in mammals. Expression of Rig-1 protein by commissural axons is inversely correlated with Slit sensitivity. Removal of Rig-1 results in a total failure of commissural axons to cross. Genetic and in vitro analyses indicate that Rig-1 functions to repress Slit responsiveness similarly to Commissureless (Comm) in Drosophila. Unlike Comm, however, Rig-1 does not produce its effect by downregulating Robo receptors on precrossing commissural axon membranes. These results identify a mechanism for regulating Slit repulsion that helps choreograph the precise switch from attraction to repulsion at a key intermediate axonal target.  相似文献   

16.
Simpson JH  Bland KS  Fetter RD  Goodman CS 《Cell》2000,103(7):1019-1032
Slit is secreted by midline glia in Drosophila and functions as a short-range repellent to control midline crossing. Although most Slit stays near the midline, some diffuses laterally, functioning as a long-range chemorepellent. Here we show that a combinatorial code of Robo receptors controls lateral position in the CNS by responding to this presumptive Slit gradient. Medial axons express only Robo, intermediate axons express Robo3 and Robo, while lateral axons express Robo2, Robo3, and Robo. Removal of robo2 or robo3 causes lateral axons to extend medially; ectopic expression of Robo2 or Robo3 on medial axons drives them laterally. Precise topography of longitudinal pathways appears to be controlled by a combination of long-range guidance (the Robo code determining region) and short-range guidance (discrete local cues determining specific location within a region).  相似文献   

17.
18.
During development, retinal ganglion cell (RGC) axons either cross or avoid the midline at the optic chiasm. In Drosophila, the Slit protein regulates midline axon crossing through repulsion. To determine the role of Slit proteins in RGC axon guidance, we disrupted Slit1 and Slit2, two of three known mouse Slit genes. Mice defective in either gene alone exhibited few RGC axon guidance defects, but in double mutant mice a large additional chiasm developed anterior to the true chiasm, many retinal axons projected into the contralateral optic nerve, and some extended ectopically-dorsal and lateral to the chiasm. Our results indicate that Slit proteins repel retinal axons in vivo and cooperate to establish a corridor through which the axons are channeled, thereby helping define the site in the ventral diencephalon where the optic chiasm forms.  相似文献   

19.
20.
In both invertebrate and lower vertebrate species, decussated commissural axons travel away from the midline and assume positions within distinct longitudinal tracts. We demonstrate that in the developing chick and mouse spinal cord, most dorsally situated commissural neuron populations extend axons across the ventral midline and through the ventral white matter along an arcuate trajectory on the contralateral side of the floor plate. Within the dorsal (chick) and intermediate (mouse) marginal zone, commissural axons turn at a conserved boundary of transmembrane ephrin expression, adjacent to which they form a discrete ascending fiber tract. In vitro perturbation of endogenous EphB-ephrinB interactions results in the failure of commissural axons to turn at the appropriate dorsoventral position on the contralateral side of the spinal cord; consequently, axons inappropriately invade more dorsal regions of B-class ephrin expression in the dorsal spinal cord. Taken together, these observations suggest that B-class ephrins act locally during a late phase of commissural axon pathfinding to specify the dorsoventral position at which decussated commissural axons turn into the longitudinal axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号