首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (X)PX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (X)PX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species.  相似文献   

2.
N-terminal acetylation has been suggested to play a role in the subcellular targeting of proteins, in particular those acetylated by the N-terminal acetyltransferase complex NatC. Based on previous positional proteomics data revealing N-terminal acetylation status and the predicted NAT substrate classes, we selected 13 suitable NatC substrates for subcellular localization studies in Saccharomyces cerevisiae. Fluorescence microscopy analysis of GFP-tagged candidates in the presence or absence of the NatC catalytic subunit Naa30 (Mak3) revealed unaltered localization patterns for all 13 candidates, thus arguing against a general role for the N-terminal acetyl group as a localization determinant. Furthermore, all organelle-localized substrates indicated undisrupted structures, thus suggesting that absence of NatC acetylation does not have a vast effect on organelle morphology in yeast.  相似文献   

3.
Abstract Protein N-terminal acetylation by Nα-acetyltransferases (NATs) is an omnipresent protein modification that affects a large number of proteins. The exact biological role of N-terminal acetylation has, however, remained enigmatic for the overall majority of affected proteins, and only for a rather small number of proteins, N-terminal acetylation was linked to various protein features including stability, localization, and interactions. This minireview tries to summarize the recent progress made in understanding the functionality of N-terminal protein acetylation and also focuses on noncanonical functions of the NATs subunits.  相似文献   

4.
N-terminal acetylation (N-Ac) is a highly abundant eukaryotic protein modification. Proteomics revealed a significant increase in the occurrence of N-Ac from lower to higher eukaryotes, but evidence explaining the underlying molecular mechanism(s) is currently lacking. We first analysed protein N-termini and their acetylation degrees, suggesting that evolution of substrates is not a major cause for the evolutionary shift in N-Ac. Further, we investigated the presence of putative N-terminal acetyltransferases (NATs) in higher eukaryotes. The purified recombinant human and Drosophila homologues of a novel NAT candidate was subjected to in vitro peptide library acetylation assays. This provided evidence for its NAT activity targeting Met-Lys- and other Met-starting protein N-termini, and the enzyme was termed Naa60p and its activity NatF. Its in vivo activity was investigated by ectopically expressing human Naa60p in yeast followed by N-terminal COFRADIC analyses. hNaa60p acetylated distinct Met-starting yeast protein N-termini and increased general acetylation levels, thereby altering yeast in vivo acetylation patterns towards those of higher eukaryotes. Further, its activity in human cells was verified by overexpression and knockdown of hNAA60 followed by N-terminal COFRADIC. NatF's cellular impact was demonstrated in Drosophila cells where NAA60 knockdown induced chromosomal segregation defects. In summary, our study revealed a novel major protein modifier contributing to the evolution of N-Ac, redundancy among NATs, and an essential regulator of normal chromosome segregation. With the characterization of NatF, the co-translational N-Ac machinery appears complete since all the major substrate groups in eukaryotes are accounted for.  相似文献   

5.
The primary structure of two proteins named major latex protein in Arabidopsis thaliana were characterized by matrix-assisted laser desorption/ionization time of flight mass spectrometer and Nano-electrospray ionization tandem mass spectrometry (nanoESI-MS/MS) after two-dimensional gel electrophoresis separation. We revealed that the two proteins with the same N termini and the N-terminal alanine were acetylated after methionine cleavage by fragmentation of three doubly charged peptides using a quadrupole-time of flight 2 tandem mass spectrometer. It was worth noting that one peptide with sodium addition and acetylation was sequenced. It is usually difficult to analyze the peptide sequence of sodium adduct due to the 22-Da increment. The two proteins are highly homologous, and both their N-terminal and C-terminal peptides were sequenced. Of the two proteins, gi|15236568 (spot A) appears only in the seeding stage and flower organ, but gi|15236566 (spot B) appears throughout the whole life of A. thaliana. The biological mechanism of the two proteins and the function of N-terminal acetylation remain to be elucidated. This study showed that ESI-MS/MS was a powerful tool for the characterization of N-terminal acetylation of proteins.  相似文献   

6.
A short motif termed Plasmodium export element (PEXEL) or vacuolar targeting signal (VTS) characterizes Plasmodium proteins exported into the host cell. These proteins mediate host cell modifications essential for parasite survival and virulence. However, several PEXEL-negative exported proteins indicate that the currently predicted malaria exportome is not complete and it is unknown whether and how these proteins relate to PEXEL-positive export. Here we show that the N-terminal 10 amino acids of the PEXEL-negative exported protein REX2 (ring-exported protein 2) are necessary for its targeting and that a single-point mutation in this region abolishes export. Furthermore we show that the REX2 transmembrane domain is also essential for export and that together with the N-terminal region it is sufficient to promote export of another protein. An N-terminal region and the transmembrane domain of the unrelated PEXEL-negative exported protein SBP1 (skeleton-binding protein 1) can functionally replace the corresponding regions in REX2, suggesting that these sequence features are also present in other PEXEL-negative exported proteins. Similar to PEXEL proteins we find that REX2 is processed, but in contrast, detect no evidence for N-terminal acetylation.  相似文献   

7.
8.
Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%-80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species.  相似文献   

9.
Tetrahymena thermophila cells contain three forms of H2A: major H2A.1 and H2A.2, which make up approximately 80% of total H2A, and a conserved variant, H2A.Z. We showed previously that acetylation of H2A.Z was essential (Q. Ren and M. A. Gorovsky, Mol. Cell 7:1329-1335, 2001). Here we used in vitro mutagenesis of lysine residues, coupled with gene replacement, to identify the sites of acetylation of the N-terminal tail of the major H2A and to analyze its function in vivo. Tetrahymena cells survived with all five acetylatable lysines replaced by arginines plus a mutation that abolished acetylation of the N-terminal serine normally found in the wild-type protein. Thus, neither posttranslational nor cotranslational acetylation of major H2A is essential. Surprisingly, the nonacetylatable N-terminal tail of the major H2A was able to replace the essential function of the acetylation of the H2A.Z N-terminal tail. Tail-swapping experiments between H2A.1 and H2A.Z revealed that the nonessential acetylation of the major H2A N-terminal tail can be made to function as an essential charge patch in place of the H2A.Z N-terminal tail and that while the pattern of acetylation of an H2A N-terminal tail is determined by the tail sequence, the effects of acetylation on viability are determined by properties of the H2A core and not those of the N-terminal tail itself.  相似文献   

10.
We present the first large-scale survey of N-terminal protein maturation in archaea based on 873 proteomically identified N-terminal peptides from the two haloarchaea Halobacterium salinarum and Natronomonas pharaonis. The observed protein maturation pattern can be attributed to the combined action of methionine aminopeptidase and N-terminal acetyltransferase and applies to cytosolic proteins as well as to a large fraction of integral membrane proteins. Both N-terminal maturation processes primarily depend on the amino acid in penultimate position, in which serine and threonine residues are over represented. Removal of the initiator methionine occurs in two-thirds of the haloarchaeal proteins and requires a small penultimate residue, indicating that methionine aminopeptidase specificity is conserved across all domains of life. While N-terminal acetylation is rare in bacteria, our proteomic data show that acetylated N termini are common in archaea affecting about 15% of the proteins and revealing a distinct archaeal N-terminal acetylation pattern. Haloarchaeal N-terminal acetyltransferase reveals narrow substrate specificity, which is limited to cleaved N termini starting with serine or alanine residues. A comparative analysis of 140 ortholog pairs with identified N-terminal peptide showed that acetylatable N-terminal residues are predominantly conserved amongst the two haloarchaea. Only few exceptions from the general N-terminal acetylation pattern were observed, which probably represent protein-specific modifications as they were confirmed by ortholog comparison.  相似文献   

11.
The MAK3 gene of Saccharomyces cerevisiae encodes an N-acetyltransferase whose acetylation of the N terminus of the L-A double-stranded RNA virus major coat protein (gag) is necessary for viral assembly. We show that the first 4 amino acids of the L-A gag protein sequence, MLRF, are a portable signal for N-terminal acetylation by MAK3. Amino acids 2, 3, and 4 are each important for acetylation by the MAK3 enzyme. In yeast cells, only three mitochondrial proteins are known to have the MAK3 acetylation signal, suggesting an explanation for the slow growth of mak3 mutants on nonfermentable carbon sources.  相似文献   

12.
Interest in histone acetylation has risen dramatically in recent years. In the following report, we present methods for the analysis of histone acetyltransferase activity in vitro. Protocols are described for radiolabeling histone proteins and N-terminal "tail" peptides, and for the analysis of acetylation by immunoblotting. Techniques for acetylating immobilized histone peptides are also described.  相似文献   

13.
Histone acetylation: facts and questions   总被引:15,自引:0,他引:15  
P. Loidl 《Chromosoma》1994,103(7):441-449
  相似文献   

14.
N(alpha)-terminal acetylation occurs in the yeast Saccharomyces cerevisiae by any of three N-terminal acetyltransferases (NAT), NatA, NatB, and NatC, which contain Ard1p, Nat3p and Mak3p catalytic subunits, respectively. The N-terminal sequences required for N-terminal acetylation, i.e. the NatA, NatB, and NatC substrates, were evaluated by considering over 450 yeast proteins previously examined in numerous studies, and were compared to the N-terminal sequences of more than 300 acetylated mammalian proteins. In addition, acetylated sequences of eukaryotic proteins were compared to the N termini of 810 eubacterial and 175 archaeal proteins, which are rarely acetylated. Protein orthologs of Ard1p, Nat3p and Mak3p were identified with the eukaryotic genomes of the sequences of model organisms, including Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Mus musculus and Homo sapiens. Those and other putative acetyltransferases were assigned by phylogenetic analysis to the following six protein families: Ard1p; Nat3p; Mak3p; CAM; BAA; and Nat5p. The first three families correspond to the catalytic subunits of three major yeast NATs; these orthologous proteins were identified in eukaryotes, but not in prokaryotes; the CAM family include mammalian orthologs of the recently described Camello1 and Camello2 proteins whose substrates are unknown; the BAA family comprise bacterial and archaeal putative acetyltransferases whose biochemical activity have not been characterized; and the new Nat5p family assignment was on the basis of putative yeast NAT, Nat5p (YOR253W). Overall patterns of N-terminal acetylated proteins and the orthologous genes possibly encoding NATs suggest that yeast and higher eukaryotes have the same systems for N-terminal acetylation.  相似文献   

15.
N-terminal acetylation, catalysed by N-terminal acetyltransferases (NATs), is among the most common protein modifications in eukaryotes and involves the transfer of an acetyl group from acetyl-CoA to the α-amino group of the first amino acid. Functions of N-terminal acetylation include protein degradation and sub-cellular targeting. Recent findings in humans indicate that a dysfunctional Nα-acetyltransferase (Naa) 10, the catalytic subunit of NatA, the major NAT, is associated with lethality during infancy. In the present study, we identified the Danio rerio orthologue zebrafish Naa 10 (zNaa10). In vitro N-terminal acetylation assays revealed that zNaa10 has NAT activity with substrate specificity highly similar to that of human Naa10. Spatiotemporal expression pattern was determined by in situ hybridization, showing ubiquitous expression with especially strong staining in brain and eye. By morpholino-mediated knockdown, we demonstrated that naa10 morphants displayed increased lethality, growth retardation and developmental abnormalities like bent axis, abnormal eyes and bent tails. In conclusion, we identified the zebrafish Naa10 orthologue and revealed that it is essential for normal development and viability of zebrafish.  相似文献   

16.
17.
The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.  相似文献   

18.
The Saccharomyces cerevisiae N-terminal acetyltransferase NatB consists of the subunits Nat3p and Mdm20p. We found by two-dimensional PAGE analysis that nat3Delta exhibited protein expression during growth in basal medium resembling protein expression in salt-adapted wild-type cells. The stress-induced carboxypeptidase Y (CPY) inhibitor and phosphatidylethanolamine-binding protein family member Tfs1p was identified as a novel NatB substrate. The N-terminal acetylation status of Tfs1p, Act1p, and Rnr4p in both wild type and nat3Delta was confirmed by tandem mass spectrometry. Furthermore it was found that unacetylated Tfs1p expressed in nat3Delta showed an approximately 100-fold decrease in CPY inhibition compared with the acetylated form, indicating that the N-terminal acetyl group is essential for CPY inhibition by Tfs1p. Phosphatidylethanolamine-binding proteins in other organisms have been reported to be involved in the regulation of cell signaling. Here we report that a number of proteins, whose expression has been shown previously to be dependent on the activity in the protein kinase A (PKA) signaling pathway, was found to be regulated in line with low PKA activity in the nat3Delta strain. The involvement of Nat3p and Tfs1p in PKA signaling was supported by caffeine growth inhibition studies. First, growth inhibition by caffeine addition (resulting in enhanced cAMP levels) was suppressed in tfs1Delta. Second, this suppression by tfs1Delta was abolished in the nat3Delta background, indicating that Tfs1p was not functional in the nat3Delta strain possibly because of a lack of N-terminal acetylation. We conclude that the NatB-dependent acetylation of Tfs1p appears to be essential for its inhibitory activity on CPY as well its role in regulating the PKA pathway.  相似文献   

19.
Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS) of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP). The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that 'spectral counting' can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components) and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence was found for suggested targeting via the secretory system. This study provides the most comprehensive chloroplast proteome analysis to date and an expanded Plant Proteome Database (PPDB) in which all MS data are projected on identified gene models.  相似文献   

20.
Protein targeting into mitochondria from the cytoplasm is fundamental to the cell biology of all eukaryotes. Our understanding of this process is heavily biased towards “model” organisms, such as animals and fungi, and it is less clear how conserved this process is throughout diverse eukaryotes. In this study, we have surveyed mitochondrial protein sorting signals from a representative of the dinoflagellate algae. Dinoflagellates are a phylum belonging to the group Alveolata, which also includes apicomplexan parasites and ciliates. We generated 46 mitochondrial gene sequences from the dinoflagellate Karlodinium micrum and analysed these for mitochondrial sorting signals. Most of the sequences contain predicted N-terminal peptide extensions that conform to mitochondrial targeting peptides from animals and fungi in terms of length, amino acid composition, and propensity to form amphipathic α-helices. The remainder lack predicted mitochondrial targeting peptides and represent carrier proteins of the inner mitochondrial membrane that have internal targeting signals in model eukaryotes. We tested for functional conservation of the dinoflagellate mitochondrial sorting signals by expressing K. micrum mitochondrial proteins in the fungus Saccharomyces cerevisiae. Both the N-terminal and internal targeting signals were sufficiently conserved to operate in this distantly related system. This study indicates that the character of mitochondrial sorting signals was well established prior to the radiation of major eukaryotic lineages and has shown remarkable conservation during long periods of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号