首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用空间自相关分析研究两种兰科植物的群体遗传结构   总被引:8,自引:4,他引:8  
李昂  罗毅波  葛颂 《生物多样性》2002,10(3):249-257
采用空间自相关分析方法对硬叶兜兰(Paphiopedilum micranthum)和独花兰(Changnienia amoena)4个天然群体的小尺度空间遗传结构进行了研究,以探讨两种兰科植物群体内遗传变异的分布特征及其形成机制。根据来自12个(硬叶兜兰)和16个(独花兰)RAPD引物所提供的多态位点,计算出每个群体的空间自相关系数Moran I值。结果表明,在2个硬叶兜兰群体中,遗传变异在短距离(3-4m)内表现出显著的正相关,在较大的距离内表现出显著的负相关,说明其遗传变异在群体内形成一定的空间结构。而对独花兰的空间自相关分析则显示,其遗传变异在参与计算的2个群体内不存在明显的空间结构。造成上述两种兰科植物具有不同空间分布特性的原因可能与其不同的繁殖方式有关。上述研究结果有助于进一步了解物种的进化历程和濒危机制,并为制定有效的保护策略和措施提供科学依据。  相似文献   

2.
3.
Recent molecular studies have shown that highly mobile species with continuous distributions can exhibit fine‐scale population structure. In this context, we assessed genetic structure within a marine species with high dispersal potential, the Atlantic spotted dolphin (Stenella frontalis). Using 19 microsatellite loci and mitochondrial control region sequences, population structure was investigated in the western North Atlantic, the Gulf of Mexico and the Azores Islands. Analyses of the microsatellite data identified four distinct genetic clusters, which were supported by the control region sequences. The highest level of divergence was seen between two clusters corresponding to previously described morphotypes that inhabit oceanic and shelf waters. The combined morphological and genetic evidence suggests these two lineages are on distinct evolutionary trajectories and could be considered distinct subspecies despite their parapatry. Further analysis of the continental shelf cluster resulted in three groups: animals inhabiting shelf waters in the western North Atlantic, the eastern Gulf of Mexico and the western Gulf of Mexico. Analyses of environmental data indicate the four genetic clusters inhabit distinct habitats in terms of depth and sea surface temperature. Contemporary dispersal rate estimates suggest all of these populations should be considered as distinct management units. Conversely, no significant genetic differentiation was observed between S. frontalis from offshore waters of the western North Atlantic and the Azores, which are separated by approximately 4500 km. Overall, the hierarchical structure observed within the Atlantic spotted dolphin shows that the biogeography of the species is complex because it is not shaped solely by geographic distance.  相似文献   

4.
5.
1. Freshwater cetacean species, including the baiji (Lipotes vexillifer), Amazon River dolphin (Inia geoffrensis), Ganges/Indus River dolphins (Platanista spp.) and Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis), apex predators in megariver ecosystems, face serious challenges owing to the deterioration of habitat quality. 2. We simulated population change of four freshwater cetacean species under increasing habitat deterioration. Carrying capacity (K) was used to represent the habitat quality, and a logistic model was used to describe the rate of habitat deterioration (dK). 3. An individual‐based Leslie matrix model showed that population declines and extinctions in freshwater cetaceans under increasing habitat deterioration exhibit a consistent pattern irrespective of the initial level of K or population size. When dK is low, population abundance fluctuates stochastically around initial K, but a rapid increase in dK is accompanied by a sharp population decline, with a residual population ultimately declining continuously to extinction. 4. Simulations show that traditional census survey techniques used in cetacean species are unlikely to detect early signs of population decline before a critical level is reached. 5. Empirical data of the likely extinction of baiji strongly agree with our simulation exercise, implying that extinction of other freshwater cetacean species may occur sooner than previously considered. Hence, precautionary approaches for habitat restoration and landscape management should be implemented before freshwater cetacean population declines are detected, and ideally, before habitat quality begins to deteriorate.  相似文献   

6.
Identifying ecological factors associated with population genetic differentiation is important for understanding microevolutionary processes and guiding the management of threatened populations. We identified ecological correlates of several population genetic parameters for three interacting species (two garter snakes and an anuran) that occupy a common landscape. Using multiple regression analysis, we found that species interactions were more important in explaining variation in population genetic parameters than habitat and nearest-neighbour characteristics. Effective population size was best explained by census size, while migration was associated with differences in species abundance. In contrast, genetic distance was poorly explained by the ecological correlates that we tested, but geographical distance was prominent in models for all species. We found substantially different population dynamics for the prey species relative to the two predators, characterized by larger effective sizes, lower gene flow and a state of migration-drift equilibrium. We also identified an escarpment formed by a series of block faults that serves as a barrier to dispersal for the predators. Our results suggest that successful landscape-level management should incorporate genetic and ecological data for all relevant species, because even closely associated species can exhibit very different population genetic dynamics on the same landscape.  相似文献   

7.
《Animal behaviour》1992,43(6):907-919
Comparative field studies of species of dart-poison frogs in the genus Dendrobates were carried out to test predictions from two hypotheses that attempt to explain female-female competition for mates in species of Dendrobates with male parental care. The sex role reversal hypothesis proposes that males invest so much time and energy in parental care that receptive males are rare relative to receptive females, and females compete to find and mate with receptive males. The parental quality hypothesis proposes that females compete to monopolize the parental effort of particular males, because they potentially suffer a cost when their mates care for the offspring of other females. Comparisons between species with male parental care (Dendrobates leucomelas) and female parental care (Dendrobates histrionicus) contradicted prediction of the sex role reversal hypothesis, but were consistent with predictions of the parental quality hypothesis. Male D. histrionicus did not compete for mates more aggressively than male D. leucomelas, and male D. leucomelas were not more selective about mating than male D. histrionicus. Female D. leucomelas and D. histrionicus were both selective about mating; female D. leucomelas associated with and competed for particular males, whereas female D. histrionicus did not.  相似文献   

8.
Identifying processes that promote or limit gene flow can help define the ecological and evolutionary history of a species. Furthermore, defining those factors that make up “species boundaries” can provide a definition of the independent evolutionary trajectories of related taxa. For many species, the historic processes that account for their distribution of genetic variation remain unresolved. In this study, we examine the geographic distribution of genetic diversity for two species of Louisiana Irises, Iris brevicaulis and Iris fulva. Specifically, we asked how populations are structured and if population structure coincides with potential barriers to gene flow. We also asked whether there is evidence of hybridization between these two species outside Louisiana hybrid zones. We used a genotyping‐by‐sequencing approach and sampled a large number of single nucleotide polymorphisms across these species' genomes. Two different population assignment methods were used to resolve population structure in I. brevicaulis; however, there was considerably less population structure in I. fulva. We used a species tree approach to infer phylogenies both within and between populations and species. For I. brevicaulis, the geography of the collection locality was reflected in the phylogeny. The I. fulva phylogeny reflected much less structure than detected for I. brevicaulis. Lastly, combining both species into a phylogenetic analysis resolved two of six populations of I. brevicaulis that shared alleles with I. fulva. Taken together, our results suggest major differences in the level and pattern of connectivity among populations of these two Louisiana Iris species.  相似文献   

9.
Understanding the factors that contribute to a population’s habitat use is important for conservation planners and managers to identify reasons behind a population’s distribution. Habitat use often differs between sexes, however few studies on sexually monomorphic species document this difference, resulting in misleading ecological interpretations and non-targeted management actions. The aim of this study was to test for sex-specific differences in the seasonal habitat use of Indo-Pacific bottlenose dolphins (Tursiops aduncus) off Bunbury, Australia. Systematic, boat-based, photographic identification dolphin surveys (n?=?587) were conducted across seasons over 6 years during 2007–2013. Generalised additive models explored relationships between the presence-absence of dolphins and sex, water depth and benthic habitat type. Results highlighted that: (i) habitat use differed seasonally for males and females, (ii) depth had a strong influence on habitat use, which differed between sexes for summer, winter and spring, and (iii) there were no sex differences in habitat use in autumn, which coincides with the peak breeding season. In summer and autumn dolphins were concentrated in shallow, near-shore waters predominantly over reef and sand, and in winter and spring dolphins had a broader distribution over reef and mud/silt with the use of deeper, offshore waters. This pattern is consistent with the seasonally-dependent dolphin abundance that has been documented for this population. Identification of sex differences in habitat use provides management agencies with insights to implement informed actions for the conservation of this coastal dolphin population which is forecast to decline by 50% in the next two decades.  相似文献   

10.
Understanding the genetic structure of a population is essential to its conservation and management. We report the level of genetic diversity and determine the population structure of a cryptic deep ocean cetacean, the Gray''s beaked whale (Mesoplodon grayi). We analysed 530 bp of mitochondrial control region and 12 microsatellite loci from 94 individuals stranded around New Zealand and Australia. The samples cover a large area of the species distribution (~6000 km) and were collected over a 22-year period. We show high genetic diversity (h=0.933–0.987, π=0.763–0.996% and Rs=4.22–4.37, He=0.624–0.675), and, in contrast to other cetaceans, we found a complete lack of genetic structure in both maternally and biparentally inherited markers. The oceanic habitats around New Zealand are diverse with extremely deep waters, seamounts and submarine canyons that are suitable for Gray''s beaked whales and their prey. We propose that the abundance of this rich habitat has promoted genetic homogeneity in this species. Furthermore, it has been suggested that the lack of beaked whale sightings is the result of their low abundance, but this is in contrast to our estimates of female effective population size based on mitochondrial data. In conclusion, the high diversity and lack of genetic structure can be explained by a historically large population size, in combination with no known exploitation, few apparent behavioural barriers and abundant habitat.  相似文献   

11.
Bayesian statistical methods based on simulation techniques have recently been shown to provide powerful tools for the analysis of genetic population structure. We have previously developed a Markov chain Monte Carlo (MCMC) algorithm for characterizing genetically divergent groups based on molecular markers and geographical sampling design of the dataset. However, for large-scale datasets such algorithms may get stuck to local maxima in the parameter space. Therefore, we have modified our earlier algorithm to support multiple parallel MCMC chains, with enhanced features that enable considerably faster and more reliable estimation compared to the earlier version of the algorithm. We consider also a hierarchical tree representation, from which a Bayesian model-averaged structure estimate can be extracted. The algorithm is implemented in a computer program that features a user-friendly interface and built-in graphics. The enhanced features are illustrated by analyses of simulated data and an extensive human molecular dataset. AVAILABILITY: Freely available at http://www.rni.helsinki.fi/~jic/bapspage.html.  相似文献   

12.
13.

Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster (Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall F ST of 0.0016 (P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus (P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation (P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling.

  相似文献   

14.
The fate of cetacean carcasses in the deep sea was investigated using autonomous deep-sea lander vehicles incorporating time-lapse camera systems, fish and amphipod traps. Three lander deployments placed cetacean carcasses at depths of 4000 to 4800 m in the north-east Atlantic for periods of 36 h, 152 h and 276 h before being recovered. The photographic sequences revealed that carcasses were rapidly consumed by fish and invertebrate scavengers with removal rates ranging from 0.05 to 0.4 kg h-1. In the longest experiment the carcass was skeletonized within five days. In each deployment, approximately an hour after emplacement, the grenadier Coryphaenoides (Nematonurus) armatus and large numbers of lysianassid amphipods had arrived at the food-fall. The initially high numbers of grenadiers declined once the majority of the bait had been consumed and a variety of other fish and invertebrates were then observed, some taking up residence at the site. None of the fish species appeared to consume the carcass directly, but preyed upon amphipods instead. Funnel traps recovered with the carcass indicated a succession in the species composition of amphipods, with the specialist necrophages such as Paralicella spp. being replaced by more generalist feeders of the Orchomene species complex.  相似文献   

15.
Lupinus microcarpus is a self-compatible annual plant that forms a species complex of morphologically variable but indeterminate varieties. In order to examine the hypothesis that varieties of L. microcarpus comprise genetically differentiated and reproductively isolated species, populations of L. microcarpus var. horizontalis and var. densiflorus were sampled from an area of sympatry in central California and genotyped using six microsatellite loci. Bayesian clustering divided the total sample into two groups corresponding to the named varieties with extremely low levels of inferred coancestry. Similarly, maximum likelihood and distance methods for genetic assignment placed individuals in two nonoverlapping groups. Evidence for isolation by distance (IBD) within each variety was found at shorter distance classes, but varieties remained differentiated in sympatry. Furthermore, coalescent estimates of divergence time indicate separation within the past 950-5050 generations, with minimal gene flow after divergence. A four-level hierarchical analysis of molecular variance (amova) found significant levels of genetic differentiation among varieties (theta(P) = 0.292), populations within varieties (theta(S) = 0.449), subpopulations within populations (theta(SS) = 0.623), and individuals within subpopulations (f = 0.421); but the greatest degree of differentiation was at the subpopulation level. Although it is sometimes assumed that the magnitude of genetic differences (e.g. F(ST)) should be greater between species than among populations or subpopulations of the same species, shared ancestral polymorphism may lead to relatively low levels of differentiation at the species level, even as the stochastic effects of genetic drift generate higher levels of differentiation at lower hierarchical levels. These results suggest that L. microcarpus var. horizontalis and var. densiflorus are recently diverged yet reproductively isolated species, with high levels of inbreeding resulting from the combined effects of limited gene flow, demographic bottlenecks, and partial selfing in finite, geographically structured populations.  相似文献   

16.
Understanding the characteristics of alien species is a prerequisite for any biological study or anti-invasion management strategy. Lolium rigidum (Poaceae) is an alien species that has become naturalized on the sandy coasts of Japan; however, it exhibits extensive morphological variation, leading to speculation that several taxa of Lolium have become naturalized. Here, we compared the morphology, reproductive biology and genetic structure of this Lolium species by growing individuals from different locations in the same environment to clarify whether the observed morphological variation is genetically based or is caused by intraspecific variation as a result of environmental differences. Principle component analyses of 11 morphological traits separated the study species into two types. Bagging experiments showed that one type exhibited an outcrossing life history, whereas the other type selfed exclusively. Nuclear DNA microsatellite analyses supported this distinction between these morphological types, with no intermediate individuals being found. The outcrossing type exhibited high genetic diversity, whereas the selfing type exhibited almost no polymorphism, reflecting the differences in their breeding systems. Moreover, both types differed from the economically important outcrossing species Lolium multiflorum and Lolium perenne. These two types of Lolium are expected to have different introduction histories and invasive potential on the coasts of Japan. In conclusion, it is important to distinguish between these types through additional biological studies to design effective control measures.  相似文献   

17.
18.
Dragonflies reside in both aquatic and terrestrial environments, depending on their life stage, necessitating the conservation of drastically different habitats; however, little is understood about how nymph and adult dragonflies function as metapopulations within connected habitat. We used genetic techniques to examine nymphs and adults within a single metapopulation both spatially and temporally to better understand metapopulation structure and the processes that might influence said structure. We sampled 97 nymphs and 149 adult Sympetrum obtrusum from eight locations, four aquatic, and four terrestrial, at the Pierce Cedar Creek Institute in Southwest Michigan over two summers. We performed AFLP genetic analysis and used the Bayesian analysis program STRUCTURE to detect genetic clusters from sampled individuals. STRUCTURE detected k = u4 populations, in which nymphs and adults from the same locations collected in different years did not necessarily fall into the same clusters. We also evaluated grouping using the statistical clustering analyses NMDS and MRPP. The results of these confirmed findings from STRUCTURE and emphasized differences between adults collected in 2012 and all other generations. These results suggest that both dispersal and a temporal cycle of emergence of nymphs from unique clusters every other year could be influential in structuring dragonfly populations, although our methods were not able to fully distinguish the influences of either force. This study provides a better understanding of local dragonfly metapopulation structure and provides a starting point for future studies to investigate the spatial and temporal mechanisms controlling metapopulation structure. The results of the study should prove informative for managers working to preserve genetic diversity in connected dragonfly metapopulations, especially in the face of increasing anthropogenic landscape changes.  相似文献   

19.
Summary Frequency estimates were determined on seventeen blood group, serum protein, and red-cell enzyme markers on random samples of 193 individuals from two Bedouin tribes in addition to the general population in Kuwait. Genetic heterogeneity between the three communities is evident from the significant differences in allelic distribution of the polymorphic markers.Genetic distance measurements were used to compare the results with the oral history of descent of the two tribal communities. Results were in agreement with tribal history.  相似文献   

20.
Patterns of genetic diversity have previously been shown to mirror geography on a global scale and within continents and individual countries. Using genome-wide SNP data on 5174 Swedes with extensive geographical coverage, we analyzed the genetic structure of the Swedish population. We observed strong differences between the far northern counties and the remaining counties. The population of Dalarna county, in north middle Sweden, which borders southern Norway, also appears to differ markedly from other counties, possibly due to this county having more individuals with remote Finnish or Norwegian ancestry than other counties. An analysis of genetic differentiation (based on pairwise F(st)) indicated that the population of Sweden's southernmost counties are genetically closer to the HapMap CEU samples of Northern European ancestry than to the populations of Sweden's northernmost counties. In a comparison of extended homozygous segments, we detected a clear divide between southern and northern Sweden with small differences between the southern counties and considerably more segments in northern Sweden. Both the increased degree of homozygosity in the north and the large genetic differences between the south and the north may have arisen due to a small population in the north and the vast geographical distances between towns and villages in the north, in contrast to the more densely settled southern parts of Sweden. Our findings have implications for future genome-wide association studies (GWAS) with respect to the matching of cases and controls and the need for within-county matching. We have shown that genetic differences within a single country may be substantial, even when viewed on a European scale. Thus, population stratification needs to be accounted for, even within a country like Sweden, which is often perceived to be relatively homogenous and a favourable resource for genetic mapping, otherwise inferences based on genetic data may lead to false conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号