首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Research on calpain of Schistosoma japonicum as a vaccine candidate   总被引:5,自引:0,他引:5  
Vaccine development by the use of calpain of Schistosoma japonicum has been tried in our laboratory. We cloned cDNA encoding the heavy chain of S. japonicum calpain, and prepared recombinant molecule of a possible vaccine region of the heavy chain. When BALB/c mice were immunized with our recombinant calpain of S. japonicum with Freund's complete adjuvant, we observed significant reduction in worm burden (41.2% reduction, P<0.05), and also significant anti-fecundity effects. In this sense, calpain of S. japonicum seems to have infection control as well as anti-disease effects. Mechanisms of vaccine effects of calpain remain to be clarified, however, several effector mechanisms are suspected. In immunized mice, raised level of iNos expression was observed, while adhesion of peritoneal exudates cells were also observed in the presence of calpain-immunized sera, suggesting the possibilities of both cellular and humoral protective mechanisms. We examined tissue distribution of calpain in various developmental stages of S. japonicum. Strong signal was observed around excretory grand of cercariae, and they secreted calpain during their migratory movement tested in vitro. Together with the findings, calpain seems to induce larvicidal effects in the immunized mice. We observed time-course kinetics of antibody production against vaccine candidates in experimental S. japonicum infection in pigs. Although significant levels of antibody production were observed for paramyosin and GST, no significant antibody production was observed for calpain. This suggests that calpain is less immunogenic, and route of immunization and/or choice of adjuvant are important in future trials of calpain vaccine.  相似文献   

2.
Cimetidine (CIM), a histamine-2-receptor antagonist, has a long history of safe use in gastric acid-mediated gastrointestinal disorders. In this study, we used CIM, as an adjuvant, with pEGFP-Sj26 GST (the recombinant plasmid containing enhanced green fluorescent protein gene and the gene encoding 26 kDa glutathione S-transferase of Schistosoma japonicum) DNA vaccine to immunized mice and attempted to enhance the protective effect against S. japonicum. The results showed that the reduction rate of worm and egg burdens in the pEGFP-Sj26GST plus CIM group were 79.0% and 68.4%, respectively, significantly higher than that in pEGFP-Sj26GST alone group (27.0% and 22.5%, P < 0.01). Compared with the pEGFP-Sj26GST alone group, mice immunized with pEGFP-Sj26GST plus CIM showed an elevated level of IFN-γ and IL-12 and a low level of IL-10 in splenocytes, while the levels of IL-4 and IL-5 showed no difference between the two groups. Our data also demonstrated that the percentage of CD4+CD25+ regulatory T cells (Tregs) was significantly decreased in the spleens of mice immunized with pEGFP-Sj26GST plus CIM. All these findings suggest that CIM as a potential schistosome DNA vaccine adjuvant can enhance the protective effect of pEGFP-Sj26GST vaccine.  相似文献   

3.
Insulin receptors have been previously identified in Schistosoma japonicum that can bind human insulin. We used the purified recombined protein of the ligand domain of S.japonicum insulin receptor 2 (SjLD2) in three independent murine vaccine/challenge trials. Compared with controls, vaccination of mice with SjLD2 resulted in a significant reduction in faecal eggs, the stunting of adult worms and a reduction in liver granuloma density in all three trials. Furthermore, in the final trial, in which mature intestinal eggs were also quantified, there was a reduction in their number. These results suggest that development of a vaccine based on rSjLD2 for preventing transmission of zoonotic schistosomiasis is feasible.  相似文献   

4.
5.
A polyhistidine-tagged recombinant tegumental protein Schistosoma japonicum very lowdensity lipoprotein binding protein (SVLBP) from adult Schistosoma japonicum was expressed in Escherichia coli. The affinity purified rSVLBP was used to vaccinate mice. The worm numbers and egg deposition recovered from the livers and veins of the immunized mice were 33.5% and 47.6% less than that from control mice, respectively (p<0.05). There was also a marked increase in the antibody response in vaccinated mice: the titer of IgG1 and IgG2a, IgG2b in the vaccinated group was significantly higher than that in the controls (>1:6,400 in total IgG). In a comparison of the reactivity of sera from healthy individuals and patients with rSVLBP, recognition patterns against this parasite tegumental antigen varied among different groups of the individuals. Notably, the average titres of anti-rSVLBP antibody in sera from faecal egg-negative individuals was significantly higher than that in sera from the faecal egg-positives, which may be reflect SVLBP-specific protection. These results suggested that the parasite tegumental protein SVLBP was a promising candidate for further investigation as a vaccine antigen for use against Asian schistosomiasis.  相似文献   

6.
Song L  Li J  Xie S  Qian C  Wang J  Zhang W  Yin X  Hua Z  Yu C 《PloS one》2012,7(2):e31456

Background

Schistosomiasis remains a major public health concern affecting billions of people around the world. Currently, praziquantel is the only drug of choice for treatment of human schistosomiasis. The emergence of drug resistance to praziquantel in schistosomes makes the development of novel drugs an urgent task. Thioredoxin glutathione reductase (TGR) enzymes in Schistosoma mansoni and some other platyhelminths have been identified as alternative targets. The present study was designed to confirm the existense and the potential value of TGR as a target for development of novel antischistosomal agents in Schistosoma japonicum, a platyhelminth endemic in Asia.

Methods and Findings

After cloning the S. japonicum TGR (SjTGR) gene, the recombinant SjTGR selenoprotein was purified and characterized in enzymatic assays as a multifunctional enzyme with thioredoxin reductase (TrxR), glutathione reductase (GR) and glutaredoxin (Grx) activities. Immunological and bioinformatic analyses confirmed that instead of having separate TrxR and GR proteins in mammalian, S. japonicum only encodes TGR, which performs the functions of both enzymes and plays a critical role in maintaining the redox balance in this parasite. These results were in good agreement with previous findings in Schistosoma mansoni and some other platyhelminths. Auranofin, a known inhibitor against TGR, caused fatal toxicity in S. japonicum adult worms in vitro and reduced worm and egg burdens in S. japonicum infected mice.

Conclusions

Collectively, our study confirms that a multifunctional enzyme SjTGR selenoprotein, instead of separate TrxR and GR enzymes, exists in S. japonicum. Furthermore, TGR may be a potential target for development of novel agents against schistosomes. This assumption is strengthened by our demonstration that the SjTGR is an essential enzyme for maintaining the thiol-disulfide redox homeostasis of S. japonicum.  相似文献   

7.
8.
为研制抗血吸虫疫苗提供实验依据,探讨了抗血吸虫SjGST-32核酸疫苗与蛋白疫苗联合免疫的免疫增强效应及免疫应答特征。将日本血吸虫DNA疫苗VR1012-SjGST-32与重组蛋白疫苗rSjGST-32分别在第0、2和4周免疫小鼠,在第6周攻击感染日本血吸虫尾蚴,攻击感染45 d后剖杀小鼠,计算减虫率、检卵率以及检测肝脏病理变化,观察免疫保护效果;检测小鼠血清中特异性IgG抗体滴度,T细胞增殖反应和抗原特异性CD4+IFN-γ+、CD4+IL-4+和CD4+IL-10+的数量,探讨免疫应答特征。结果显示,DNA初免-蛋白加强的联合免疫组的保护作用优于单独免疫组,显著提高了减虫率(42.3%)和减卵率(59.6%),并且能够显著减轻血吸虫虫卵对肝脏的病理损害;进一步发现,DNA疫苗和蛋白疫苗联合应用增强了机体T淋巴细胞增殖反应、抗体IgG滴度以及抗原特异性CD4+IFN-γ+的产生。这些研究为新型血吸虫疫苗的优化设计和合理应用提供了依据。  相似文献   

9.
The aim of this study was to construct and evaluate the immunity efficacy of the DNA multivalent vaccine pVIVO2SjFABP-23. The vaccine was constructed and produced as follows. Forty BALB/c mice were divided into four groups designated pVIVO2, pVIVO2Sj23, pVIVO2SjFABP and pVIVO2SjFABP-23. Each mouse was immunized with 100 μg of the corresponding plasmid DNA by intramuscular injection. 28 days post-vaccination, the mice were challenged with S. japonicum cercariae, and the worm and egg burdens were determined 42 days post-challenge. Serum samples were collected from all the mice before and after vaccination and at the end of the experiment, and used for antibody detection. The IFN-γ and IL-4 levels were quantified in the supernatants of specifically stimulated spleen cells. The number of worms was reduced by 52%, 40% and 42% in mice respectively immunized with pVIVO2SjFABP-23, pVIVO2Sj23 or pVIVO2SjFABP. A respective 61%, 38% and 39% egg reduction was determined relative to those mice that only received the empty pVIVO2 plasmid. pVIVO2SjFABP-23 immunization increased IgG levels against SWAP and SEA. Increased IFN-γ levels were detected in the supernatant of specific stimulated spleen cells from mice immunized with the 3 different constructs. The multivalent DNA vaccine developed induced higher levels of protection than the two monovalent tested vaccines.  相似文献   

10.
Approximately 200 million people worldwide currently suffer from schistosomiasis, one of the most important human parasitic diseases. Although an established infection can be treated with anthelminthics and praziquantel, vaccination would be the ideal method for integral control of schistosomiasis. Schistosoma mansoni IrV-5, recommended as a vaccine candidate by the World Health Organization/Special Programme for Research and Training in Tropical Diseases, produced high protection in animal models. We therefore focused on its homolog, the Schistosoma japonicum 62 kDa antigen, and analyzed it using B cell/antibody- related databases and analysis tools for the prediction of B-cell epitopes. Epitope B3 was selected for further investigation. Experiments using a murine model indicated that mice immunized with B3 resulted in lymphocytes proliferation and produced high levels of specific immunoglobulin G and GI, but did not produce impressive cytokines. The vaccination showed partial protective immunity, measured by worm burden and anti-fecundity immunity against S. japonicum. These results indicated that the epitope B3 from S. japonicum 62-kDa antigen might act as a candidate immunogen for future epitope vaccine investigation.  相似文献   

11.
辐射敏感蛋白23具有核苷酸切除修复功能,在泛素蛋白酶体途径中起到重要作用。本研究利用PCR技术克隆了日本血吸虫辐射敏感蛋白23(Sj RAD23)编码的c DNA序列,成功获得Sj RAD23的基因序列,其ORF为1 053 bp。构建Sj RAD23基因重组表达质粒p ET28a(+)-Sj RAD23,并在大肠杆菌BL21中成功诱导表达,重组蛋白在上清和沉淀中都有存在。利用免疫组化技术检测该蛋白在虫体的分布情况,该蛋白广泛分布在日本血吸虫虫体被膜。用重组蛋白免疫BALB/c小鼠后,免疫小鼠血清中检测到较高水平的特异性Ig G、Ig G1和Ig G2a。Western blotting分析显示重组蛋白能够被日本血吸虫成虫可溶性抗原免疫小鼠血清所识别。用重组蛋白r Sj RAD23免疫结果与206佐剂对照组比较,r Sj RAD23在BALB/c小鼠中诱导了35.94%减虫率,40.59%肝脏减卵率。结果表明Sj RAD23具有作为疫苗候选分子的潜力。  相似文献   

12.
The cDNA of a Schistosoma japonicum myophilin-like protein was cloned, sequenced, and expressed in Escherichia coli as a recombined protein (rSj myophilin-like protein), and the protein was purified by affinity chromatography. The deduced amino acid sequences of the Sj myophilin-like protein showed significant homology to myophilin, calponin, Np22 and Mp20. Northern blot and RT-PCR analyzes revealed expression of the Sj myophilin-like protein mRNA in eggs, sporocysts, cercariae, hepatic schistosomula and adult worms. Confocal fluorescence microscopy localized the native protein to the muscle of the adult worm. In schistosome-infected rabbits, the rSj myophilin-like protein antibody level, assessed by ELISA, was elevated after infection but was reduced after praziquantel treatment. In humans, the myophilin-like protein antibody level was evaluated by ELISA in sera from 33 non-infected humans and 61 schistosomiasis patients; the results showed a highly significant difference between the two groups with a sensitivity of 57.4%. Taken together, the myophilin-like protein may prove useful for monitoring the therapeutic effect of praziquantel rather than in serodiagnosis of schistosomiasis.  相似文献   

13.
The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1) and IgG(3) from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1), suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic.  相似文献   

14.
, , , and 1992. Cloning and partial nucleotide sequence of Schistosoma japonicum paramyosin: a potential vaccine candidate against schistosomiasis. International Journal for Parasitology 22: 1187–1191. Paramyosin from the blood fluke, Schistosoma mansoni, has shown promise as a vaccine candidate for schistosomiasis mansoni. Here we report the cloning and partial nucleotide sequence of a cDNA encoding paramyosin from the related human parasite, Schistosoma japonicum. Affinity purified antibodies to this clone recognized a S. japonicum antigen of molecular weight 97 kDa, equivalent to the reported size of S. mansoni paramyosin. Alignment of the cDNA sequence with that of S. mansoni paramyosin revealed 90% identity. Comparison of the predicted amino acid sequences revealed 95% identity. Although these two parasites differ in many characteristics, the substantial homology demonstrated here between S. mansoni and S. japonicum paramyosin could have important implications for the development of a S. japonicum vaccine.  相似文献   

15.

Background

Schistosomiasis japonica is a serious debilitating and sometimes fatal disease. Accurate diagnostic tests play a key role in patient management and control of the disease. However, currently available diagnostic methods are not ideal, and the detection of the parasite DNA in blood samples has turned out to be one of the most promising tools for the diagnosis of schistosomiasis. In our previous investigations, a 230-bp sequence from the highly repetitive retrotransposon SjR2 was identified and it showed high sensitivity and specificity for detecting Schistosoma japonicum DNA in the sera of rabbit model and patients. Recently, 29 retrotransposons were found in S. japonicum genome by our group. The present study highlighted the key factors for selecting a new perspective sensitive target DNA sequence for the diagnosis of schistosomiasis, which can serve as example for other parasitic pathogens.

Methodology/Principal Findings

In this study, we demonstrated that the key factors based on the bioinformatic analysis for selecting target sequence are the higher genome proportion, repetitive complete copies and partial copies, and active ESTs than the others in the chromosome genome. New primers based on 25 novel retrotransposons and SjR2 were designed and their sensitivity and specificity for detecting S. japonicum DNA were compared. The results showed that a new 303-bp sequence from non-long terminal repeat (LTR) retrotransposon (SjCHGCS19) had high sensitivity and specificity. The 303-bp target sequence was amplified from the sera of rabbit model at 3 d post-infection by nested-PCR and it became negative at 17 weeks post-treatment. Furthermore, the percentage sensitivity of the nested-PCR was 97.67% in 43 serum samples of S. japonicum-infected patients.

Conclusions/Significance

Our findings highlighted the key factors based on the bioinformatic analysis for selecting target sequence from S. japonicum genome, which provide basis for establishing powerful molecular diagnostic techniques that can be used for monitoring early infection and therapy efficacy to support schistosomiasis control programs.  相似文献   

16.
Schistosomiasis is a globally important helminthic disease of both humans and animals, and is the second most common parasitic disease after malaria. Although praziquantel is extensively used for treatment of parasitic diseases, drug resistance has been reported. Therefore, new drugs and effective vaccines are needed for continuous control of schistosomiasis. Eggs produced by schistosomes are responsible for the occurrence and spread of schistosomiasis. Revealing the reproductive mechanism of schistosomes will help to control this disease. In this study, the proteomic profiles of single-sex infected female worms and bisexual infected mature female worms of Schistosoma japonicum at 18, 21, 23 and 25 days p.i. were identified with isobaric tags for relative quantitation-coupled liquid chromatography–tandem mass spectrometry. Differentially expressed proteins were subsequently used for bioinformatic analysis. Six highly expressed differentially expressed proteins in mature female worms were selected and long-term interference with small interfering RNA (siRNA) was conducted to determine biological functions. SiRNA against S. japonicum translationally controlled tumour protein (SjTCTP) resulted in the most significant effect on the growth and development of MF worms. Sjtctp mRNA expression gradually increased over time with a high level of expression maintained at 25–42 days p.i., while levels were significantly higher in mature female worms than male and SF worms. The subsequent animal immune protection experiments showed that recombinant SjTCTP (rSjTCTP) reduced the number of adults by 44.7% (P < 0.01), average egg burden per gram of liver by 57.94% (P < 0.01), egg hatching rate by 47.57% (P < 0.01), and oviposition of individual females by 43.16%. rSjTCTP induced higher levels of serum IgG, IL-2, and IL-10 in mice. Collectively, these results show that SjTCTP is vital to reproduction of female worms and, thus, is a candidate antigen for immune protection.  相似文献   

17.
Vaccines are considered by many to be one of the most successful medical interventions against infectious diseases. But many significant obstacles remain, such as optimizing DNA vaccines for use in humans or large animals. The amount of doses, route and easiness of administration are also important points to consider in the design of new DNA vaccines. Heterologous prime-boost regimens probably represent the best hope for an improved DNA vaccine strategy. In this study, we have shown that heterologous prime-boost vaccination against tuberculosis (TB) using intranasal BCG priming/DNA-HSP65 boosting (BCGin/DNA) provided significantly greater protection than that afforded by a single subcutaneous or intranasal dose of BCG. In addition, BCGin/DNA immunization was also more efficient in controlling bacterial loads than were the other prime-boost schedules evaluated or three doses of DNA-HSP65 as a naked DNA. The single dose of DNA-HSP65 booster enhanced the immunogenicity of a single subcutaneous BCG vaccination, as evidenced by the significantly higher serum levels of anti-Hsp65 IgG2a Th1-induced antibodies, as well as by the significantly greater production of IFN-γ by antigen-specific spleen cells. The BCG prime/DNA-HSP65 booster was also associated with better preservation of lung parenchyma. The improvement of the protective effect of BCG vaccine mediated by a DNA-HSP65 booster suggests that our strategy may hold promise as a safe and effective vaccine against TB.  相似文献   

18.
The granulomatous pathology in human intestinal schistosomiasisis induced primarily by the egg antigens of schistosome, a parasitictrematode. Glycolipids and glycoproteins were extracted fromthe eggs of the two major species which infect human, Schistosomamansoni and Schistosoma japonicum, for structural characterizationbased on highly sensitive mass spectrometric analysis coupledwith chemical derivatization. Here, we demonstrate that a seriesof uniquely multifucosylated glycosphingolipids constitute themajor egg glycolipids of S.mansoni but not of S.japonicum. TheS.mansoni glycosphingolipids were found to be extended by varyingnumbers of an unusual repeating unit,  相似文献   

19.
In contrast to damage of genomic DNA and despite its potential to affect cell physiology, RNA damage is a poorly examined field in biomedical research. Potential triggers of RNA damage as well as its pathophysiological implications remain largely unknown. While less lethal than mutations in genome, such non-acutely lethal insults to cells have been recently associated with underlying mechanisms of several human chronic diseases. We investigated whether RNA damage could be related to the exposure of particular xenobiotics by testing the RNA-damaging activity of a series of chemicals with different mechanisms of action. Cultured human T-lymphoblastoid cells were treated with ethyl methanesulfonate (EMS), H(2)O(2), doxorubicin, spermine, or S-nitroso-N-acetylpenicillamine (SNAP). Furthermore, we studied the potential protective activity of a pomegranate extract against RNA damage induced by different chemicals. Special attention has been paid to the protective mechanisms of the extract. The protective effect of pomegranate can be mediated by alterations of the rates of toxic agent absorption and uptake, by trapping of electrophiles as well as free radicals, and protection of nucleophilic sites in RNA. We used two different treatment protocols (pre- and co-treatment) for understanding the mechanism of the inhibitory activity of pomegranate. We demonstrated that total RNA is susceptible to chemical attack. A degradation of total RNA could be accomplished with doxorubicin, H(2)O(2), spermine and SNAP. However, EMS, a well-known DNA-damaging agent, was devoid of RNA-damaging properties, while spermine and SNAP, although lacking of DNA-damaging properties, were able to damage RNA. Pomegranate reduced the RNA-damaging effect of doxorubicin, H(2)O(2), and spermine. Its inhibitory activity could be related with its ability to forms complexes with doxorubicin and H(2)O(2), or interacts with the intracellular formation of reactive species mediating their toxicity. For spermine, an alteration of the rates of spermine absorption and uptake can also be involved.  相似文献   

20.
There has been growing interest in paramyosin as a vaccine component to combat schistosomiasis. Immunological and molecular techniques have been used in the past to investigate the effectiveness of a paramyosin vaccine as an anti-schistosomal treatment. However, recent localization studies at ultrastructural and morphological levels have highlighted a number of questions concerning the role of paramyosin within schistosome parasites. Debates about how a non-surface protein such as paramyosin might provide protection against schistosome infections have recently been addressed by microscopy results. Immunolocalization studies have indicated multiple functions of paramyosin within the parasite and provided insights into how a vaccine may target the parasite, as discussed here by Geoffrey Gobert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号