首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three selection experiments were used to identify chromosome regions that contain QTL affecting late-life and early-life fitness in Drosophila melanogaster. The selection experiments were initiated by crossing pairs of inbred lines that had been derived from outbred laboratory populations that had different mean life spans. QTL regions were located by association with microsatellite markers that showed significant selection responses. Regions between recombination map positions 54 and 81 on chromosome 2, between 0 and 30 on chromosome 3, and near locations 49 and 81 on chromosome 3 had the strongest support as locations of life-span QTL. There was good general agreement between the life-span QTL regions that were identified by selection and those that were identified in a companion recombination mapping experiment that used the same fly stocks. Many marker loci responded in opposite directions to selection for late- and early-life fitness, indicating negative genetic correlations or trade-offs between those traits. Indirect evidence suggested that some negative genetic correlations were due to antagonistic pleiotropy.  相似文献   

2.
Wilson RH  Morgan TJ  Mackay TF 《Genetics》2006,173(3):1455-1463
Limited life span and senescence are near-universal characteristics of eukaryotic organisms, controlled by many interacting quantitative trait loci (QTL) with individually small effects, whose expression is sensitive to the environment. Analyses of mutations in model organisms have shown that genes affecting stress resistance and metabolism affect life span across diverse taxa. However, there is considerable segregating variation for life span in nature, and relatively little is known about the genetic basis of this variation. Replicated lines of Drosophila that have evolved increased longevity as a correlated response to selection for postponed senescence are valuable resources for identifying QTL affecting naturally occurring variation in life span. Here, we used deficiency complementation mapping to identify at least 11 QTL on chromosome 3 that affect variation in life span between five old (O) lines selected for postponed senescence and their five base (B) population control lines. Most QTL were sex specific, and all but one affected multiple O lines. The latter observation is consistent with alleles at intermediate frequency in the base population contributing to the response to selection for postponed senescence. The QTL were mapped with high resolution and contained from 12 to 170 positional candidate genes.  相似文献   

3.
The nature of genetic variation for Drosophila longevity in a population of recombinant inbred lines was investigated by estimating quantitative genetic parameters and mapping quantitative trait loci (QTL) for adult life span in five environments: standard culture conditions, high and low temperature, and heat-shock and starvation stress. There was highly significant genetic variation for life span within each sex and environment. In the analysis of variance of life span pooled over sexes and environments, however, the significant genetic variation appeared in the genotype x sex and genotype x environment interaction terms. The genetic correlation of longevity across the sexes and environments was not significantly different from zero in these lines. We estimated map positions and effects of QTL affecting life span by linkage to highly polymorphic roo transposable element markers, using a multiple-trait composite interval mapping procedure. A minimum of 17 QTL were detected; all were sex and/or environment-specific. Ten of the QTL had sexually antagonistic or antagonistic pleiotropic effects in different environments. These data provide support for the pleiotropy theory of senescence and the hypothesis that variation for longevity might be maintained by opposing selection pressures in males and females and variable environments. Further work is necessary to assess the generality of these results, using different strains, to determine heterozygous effects and to map the life span QTL to the level of genetic loci.  相似文献   

4.
The ability to withstand periods of scarce food resources is an important fitness trait. Starvation resistance is a quantitative trait controlled by multiple interacting genes and exhibits considerable genetic variation in natural populations. This genetic variation could be maintained in the face of strong selection due to a trade-off in resource allocation between reproductive activity and individual survival. Knowledge of the genes affecting starvation tolerance and the subset of genes that affect variation in starvation resistance in natural populations would enable us to evaluate this hypothesis from a quantitative genetic perspective. We screened 933 co-isogenic P-element insertion lines to identify candidate genes affecting starvation tolerance. A total of 383 P-element insertions induced highly significant and often sex-specific mutational variance in starvation resistance. We also used deficiency complementation mapping followed by complementation to mutations to identify 12 genes contributing to variation in starvation resistance between two wild-type strains. The genes we identified are involved in oogenesis, metabolism, and feeding behaviors, indicating a possible link to reproduction and survival. However, we also found genes with cell fate specification and cell proliferation phenotypes, which implies that resource allocation during development and at the cellular level may also influence the phenotypic response to starvation.  相似文献   

5.
Courtship plays a major role in the sexual isolation of species, yet the genetics underlying courtship behaviour are poorly understood. Here we analyse quantitative trait loci (QTL) for a major component of courtship song in recombinant inbred lines derived from two laboratory strains of Drosophila melanogaster. The total variance among lines exceeds that between parental strains, and is broadly similar to that seen among geographic strains of the Cosmopolitan form of this species. Previous studies of the quantitative genetics of fly song have implied a polygenic additive inheritance with numerous genes spread throughout the genome. We find evidence for only three significant QTLs explaining 54% of the genetic variance in total. Thus there is evidence for a few large effect genes contributing to the genetic variance among lines. Interestingly, almost all of the candidate song genes previously described for D. melanogaster do not coincide with our QTLs.  相似文献   

6.
We used quantitative trait loci (QTL) mapping to evaluate the age specificity of naturally segregating alleles affecting life span. Estimates of age-specific mortality rates were obtained from observing 51,778 mated males and females from a panel of 144 recombinant inbred lines (RILs). Twenty-five QTL were found, having 80 significant effects on life span and weekly mortality rates. Generation of RILs from heterozygous parents enabled us to contrast effects of QTL alleles with the means of RIL populations. Most of the low-frequency alleles increased mortality, especially at younger ages. Two QTL had negatively correlated effects on mortality at different ages, while the remainder were positively correlated. Chromosomal positions of QTL were roughly concordant with estimates from other mapping populations. Our findings are broadly consistent with a mix of transient deleterious mutations and a few polymorphisms maintained by balancing selection, which together contribute to standing genetic variation in life span.  相似文献   

7.
Pasyukova EG  Vieira C  Mackay TF 《Genetics》2000,156(3):1129-1146
In a previous study, sex-specific quantitative trait loci (QTL) affecting adult longevity were mapped by linkage to polymorphic roo transposable element markers, in a population of recombinant inbred lines derived from the Oregon and 2b strains of Drosophila melanogaster. Two life span QTL were each located on chromosomes 2 and 3, within sections 33E-46C and 65D-85F on the cytological map, respectively. We used quantitative deficiency complementation mapping to further resolve the locations of life span QTL within these regions. The Oregon and 2b strains were each crossed to 47 deficiencies spanning cytological regions 32F-44E and 64C-76B, and quantitative failure of the QTL alleles to complement the deficiencies was assessed. We initially detected a minimum of five and four QTL in the chromosome 2 and 3 regions, respectively, illustrating that multiple linked factors contribute to each QTL detected by recombination mapping. The QTL locations inferred from deficiency mapping did not generally correspond to those of candidate genes affecting oxidative and thermal stress or glucose metabolism. The chromosome 2 QTL in the 35B-E region was further resolved to a minimum of three tightly linked QTL, containing six genetically defined loci, 24 genes, and predicted genes that are positional candidates corresponding to life span QTL. This region was also associated with quantitative variation in life span in a sample of 10 genotypes collected from nature. Quantitative deficiency complementation is an efficient method for fine-scale QTL mapping in Drosophila and can be further improved by controlling the background genotype of the strains to be tested.  相似文献   

8.
Zimmerman E  Palsson A  Gibson G 《Genetics》2000,155(2):671-683
Two composite multiple regression-interval mapping analyses were performed to identify candidate quantitative trait loci (QTL) affecting components of wing shape in Drosophila melanogaster defined by eight relative warp-based measures. A recombinant inbred line design was used to map QTL for the shape of two intervein regions in the anterior compartment of the wing, using a high resolution map of retrotransposon insertion sites between Oregon-R and Russian 2b. A total of 35 QTL representing up to 23 different loci were identified, many of which are located near components of the epidermal growth factor-Ras signal transduction pathway that regulates vein vs. intervein decision making and vein placement. Over one-half of the loci were detected in both sexes, and just under one-half were detected at two different growth temperatures. Different loci were found to affect aspects of shape in each intervein region, confirming that the shape of the whole wing should be regarded as a compound trait composed of several developmental units. In addition, a reciprocal backcross design was used to map QTL affecting shape in the posterior compartment of the wings of 831 flies, using a molecular map of 16 allele-specific oligohybridization single nucleotide polymorphism (SNP) markers between two divergent inbred lines. A total of 13 QTL were detected and shown to have generally additive effects on separable components of shape, in both sexes. By contrast, 8 QTL that affected wing size in these backcrosses were nearly dominant in their effects. The results confirm at the genetic level that wing shape is regulated independent of wing size and set up the hypothesis that wing shape is regulated in part through the regulation of the length and positioning of wing veins, involving quantitative regulation of the activity of secreted growth factors.  相似文献   

9.
Leips J  Mackay TF 《Genetics》2000,155(4):1773-1788
The genetic architecture of variation in adult life span was examined for a population of recombinant inbred lines, each of which had been crossed to both inbred parental strains from which the lines were derived, after emergence from both high and low larval density. QTL affecting life span were mapped within each sex and larval density treatment by linkage to highly polymorphic roo-transposable element markers, using a composite interval mapping method. We detected a total of six QTL affecting life span; the additive effects and degrees of dominance for all were highly sex- and larval environment-specific. There were significant epistatic interactions between five of the life span QTL, the effects of which also differed according to genetic background, sex, and larval density. Five additional QTL were identified that contributed to differences among lines in their sensitivity to variation in larval density. Further fine-scale mapping is necessary to determine whether candidate genes within the regions to which the QTL map are actually responsible for the observed variation in life span.  相似文献   

10.
Knockdown resistance to high temperature is an ecologically important trait in small insects. A composite interval mapping was performed on the two major autosomes of Drosophila melanogaster to search for quantitative trait loci (QTL) affecting knockdown resistance to high temperature (KRHT). Two dramatically divergent lines from geographically different thermal environments were artificially selected on KRHT. These lines were crossed to produce two backcross (BC) populations. Each BC was analysed for 200 males with 18 marker loci on chromosomes 2 and 3. Three X-linked markers were used to test for X-linked QTL in an exploratory way. The largest estimate of autosome additive effects was found in the pericentromeric region of chromosome 2, accounting for 19.26% (BC to the low line) and 29.15% (BC to the high line) of the phenotypic variance in BC populations, but it could represent multiple closely linked QTL. Complete dominance was apparent for three QTL on chromosome 3, where heat-shock genes are concentrated. Exploratory analysis of chromosome X indicated a substantial contribution of this chromosome to KRHT. The results show that a large-effect QTL with dominant gene action maps on the right arm of chromosome 3. Further, the results confirm that QTL for heat resistance are not limited to chromosome 3.  相似文献   

11.
Morgan TJ  Mackay TF 《Heredity》2006,96(3):232-242
For insects, temperature is a major environmental variable that can influence an individual's behavioral activities and fitness. Drosophila melanogaster is a cosmopolitan species that has had great success in adapting to and colonizing diverse thermal niches. This adaptation and colonization has resulted in complex patterns of genetic variation in thermotolerance phenotypes in nature. Although extensive work has been conducted documenting patterns of genetic variation, substantially less is known about the genomic regions or genes that underlie this ecologically and evolutionarily important genetic variation. To begin to understand and identify the genes controlling thermotolerance phenotypes, we have used a mapping population of recombinant inbred (RI) lines to map quantitative trait loci (QTL) that affect variation in both heat- and cold-stress resistance. The mapping population was derived from a cross between two lines of D. melanogaster (Oregon-R and 2b) that were not selected for thermotolerance phenotypes, but exhibit significant genetic divergence for both phenotypes. Using a design in which each RI line was backcrossed to both parental lines, we mapped seven QTL affecting thermotolerance on the second and third chromosomes. Three of the QTL influence cold-stress resistance and four affect heat-stress resistance. Most of the QTL were trait or sex specific, suggesting that overlapping but generally unique genetic architectures underlie resistance to low- and high-temperature extremes. Each QTL explained between 5 and 14% of the genetic variance among lines, and degrees of dominance ranged from completely additive to partial dominance. Potential thermotolerance candidate loci contained within our QTL regions are identified and discussed.  相似文献   

12.
Jordan KW  Morgan TJ  Mackay TF 《Genetics》2006,174(1):271-284
Locomotion is an integral component of most animal behaviors and many human diseases and disorders are associated with locomotor deficits, but little is known about the genetic basis of natural variation in locomotor behavior. Locomotion is a complex trait, with variation attributable to the joint segregation of multiple interacting quantitative trait loci (QTL), with effects that are sensitive to the environment. We assessed variation in a component of locomotor behavior (locomotor reactivity) in a population of 98 recombinant inbred lines of Drosophila melanogaster and mapped four QTL affecting locomotor reactivity by linkage to polymorphic roo transposable element insertion sites. We used complementation tests of deficiencies to fine map these QTL to 12 chromosomal regions and complementation tests of mutations to identify 13 positional candidate genes affecting locomotor reactivity, including Dopa decarboxylase (Ddc), which catalyzes the final step in the synthesis of serotonin and dopamine. Linkage disequilibrium mapping in a population of 164 second chromosome substitution lines derived from a single natural population showed that polymorphisms at Ddc were associated with naturally occurring genetic variation in locomotor behavior. These data implicate variation in the synthesis of bioamines as a factor contributing to natural variation in locomotor reactivity.  相似文献   

13.
We examined the genetic architecture of four fitness-related traits (reproductive success, ovariole number, body size and early fecundity) in a panel of 98 Oregon-R x 2b3 recombinant inbred lines (RILs). Highly significant genetic variation was observed in this population for female, but not male, reproductive success. The cross-sex genetic correlation for reproductive success was 0.20, which is not significantly different from zero. There was significant genetic variation segregating in this cross for ovariole number, but not for body size or early fecundity. The RILs were genotyped for cytological insertion sites of roo transposable elements, yielding 76 informative markers with an average spacing of 3.2 cM. Quantitative trait loci (QTL) affecting female reproductive success and ovariole number were mapped using a composite interval mapping procedure. QTL for female reproductive success were located at the tip of the X chromosome between markers at cytological locations 1B and 3E; and on the left arm of chromosome 2 in the 30D-38A cytological region. Ovariole number QTL mapped to cytological intervals 62D-69D and 98A-98E, both on the third chromosome. The regions harbouring QTL for female reproductive success and ovariole number were also identified as QTL for longevity in previous studies with these lines.  相似文献   

14.
Mezey JG  Houle D  Nuzhdin SV 《Genetics》2005,169(4):2101-2113
Variation in vein position and wing shape of Drosophila melanogaster depends on many genes. In the following, we report the results of a QTL analysis of wing shape in D. melanogaster. We identified QTL responsible for natural variation for wing shape and analyzed their interactions with developmental genetic signaling pathways important for vein positioning. The QTL analysis indicated that the total number of QTL segregating in this population is likely to be very large. The locations of putative QTL identified in this study were compared to those identified in previous studies and, while there is more correspondence across studies than expected by chance on the third chromosome, the studies appear to have identified different QTL. Using a complementation design, we tested for interactions among these QTL with the Hedgehog and Decapentaplegic signaling pathways, which are important for the development and position of vein pairs L3-L4 and L2-L5. Three QTL showed strong interactions with these two pathways, supporting the hypothesis that these QTL are involved in these pathways. Naturally segregating variation can therefore act through known signaling pathways to produce variation in vein position.  相似文献   

15.
Leips J  Gilligan P  Mackay TF 《Genetics》2006,172(3):1595-1605
Life-history theory and evolutionary theories of aging assume the existence of alleles with age-specific effects on fitness. While various studies have documented age-related changes in the genetic contribution to variation in fitness components, we know very little about the underlying genetic architecture of such changes. We used a set of recombinant inbred lines to map and characterize the effects of quantitative trait loci (QTL) affecting fecundity of Drosophila melanogaster females at 1 and 4 weeks of age. We identified one QTL on the second chromosome and one or two QTL affecting fecundity on the third chromosome, but these QTL affected fecundity only at 1 week of age. There was more genetic variation for fecundity at 4 weeks of age than at 1 week of age and there was no genetic correlation between early and late-age fecundity. These results suggest that different loci contribute to the variation in fecundity as the organism ages. Our data provide support for the mutation accumulation theory of aging as applied to reproductive senescence. Comparing the results from this study with our previous work on life-span QTL, we also find evidence that antagonistic pleiotropy may contribute to the genetic basis of senescence in these lines as well.  相似文献   

16.
Analgesia (pain reduction, or antinociception) is a classical and clinically important effect of morphine administration, and in rodent models sensitivity to morphine has been shown to be strongly influenced by genotype. For example, several studies have reported marked differences in morphine antinociception between the insensitive C57BL/6 (B6) and sensitive DBA/2 (D2) inbred mouse strains on the hot-plate assay. This prompted the present genome-wide search for quantitative trait loci (QTLs) that are chromosomal sites influencing the magnitude of antinociception, by using four mapping populations derived from the B6 and D2 progenitor inbred strains. These four were the BXD recombinant inbred (RI) strain set, an F2 (B6D2F2) population, short-term selective breeding for antinociception from a B6D2F2 founding population, and incipient or completed congenic strains. In the BXD RI set and in the B6D2F2, a genome-wide search identified 10-12 provisional QTLs at a nominal p <.05. The other populations were subsequently used as confirmation steps to test each of the provisional QTL regions. Based on all available mapping populations, four QTLs emerged as significant (p <.00005) on proximal Chromosome (Chr) 1 (females only), proximal Chr 9 (females only), mid Chr 9, and proximal Chr 10. The Chr 10 QTL comaps to the same region as the micro-opioid receptor gene (Oprm); this receptor is a known mediator of morphine's antinociceptive effects. The Chr 1 QTL was evident only in females and comapped with the kappa-opioid receptor gene, Oprk.  相似文献   

17.
Quantitative trait loci in Drosophila   总被引:1,自引:0,他引:1  
Phenotypic variation for quantitative traits results from the simultaneous segregation of alleles at multiple quantitative trait loci. Understanding the genetic architecture of quantitative traits begins with mapping quantitative trait loci to broad genomic regions and ends with the molecular definition of quantitative trait loci alleles. This has been accomplished for some quantitative trait loci in Drosophila. Drosophila quantitative trait loci have sex-, environment- and genotype-specific effects, and are often associated with molecular polymorphisms in non-coding regions of candidate genes. These observations offer valuable lessons to those seeking to understand quantitative traits in other organisms, including humans.  相似文献   

18.
《Fly》2013,7(4):247-252
Starvation resistance (SR) is an important trait for survival of insects in the wild. We used recombinant inbred lines (RIL) to search for quantitative trait loci (QTL) in crosses between intercontinental inbred lines that were originally selected for heat-knockdown resistance. SR was measured as the time of survival under repeated events of starvation. SR was consistently higher in females than in males. Composite interval mapping identified one QTL region (cytological range 64D - 66E2) on the left arm of chromosome 3 in males, and no QTL was found in females. Many candidate genes that were identified in previous studies of QTL for stress resistance are included within this QTL region. The QTL-allele that decreased SR was found in the line originating from the colder population (Denmark). We discuss our results with regard to multiple candidate genes, non-colocalization with thermotolerance QTL, and possible geographical variation.  相似文献   

19.
We have mapped quantitative trait loci (QTL) harboring naturally occurring allelic variation for Drosophila bristle number. Lines with high (H) and low (L) sternopleural bristle number were derived by artificial selection from a large base population. Isogenic H and L sublines were extracted from the selection lines, and populations of X and third chromosome H/L recombinant isogenic lines were constructed in the homozygous low line background. The polymorphic cytological locations of roo transposable elements provided a dense molecular marker map with an average intermarker distance of 4.5 cM. Two X chromosome and six chromosome 3 QTL affecting response to selection for sternopleural bristle number and three X chromosome and three chromosome 3 QTL affecting correlated response in abdominal bristle number were detected using a composite interval mapping method. The average effects of bristle number QTL were moderately large, and some had sex-specific effects. Epistasis between QTL affecting sternopleural bristle number was common, and interaction effects were large. Many of the intervals containing bristle number QTL coincided with those mapped in previous studies. However, resolution of bristle number QTL to the level of genetic loci is not trivial, because the genomic regions containing bristle number QTL often did not contain obvious candidate loci, and results of quantitative complementation tests to mutations at candidate loci affecting adult bristle number were ambiguous.  相似文献   

20.
G Landis  D Bhole  L Lu  J Tower 《Genetics》2001,158(3):1167-1176
Genome sequencing reveals that a large percentage of Drosophila genes have homologs in humans, including many human disease genes. The goal of this research was to develop methods to efficiently test Drosophila genes for functions in vivo. An important challenge is the fact that many genes function at more than one point during development and during the life cycle. Conditional expression systems such as promoters regulated by tetracycline (or its derivative doxycycline) are often ideal for testing gene functions. However, generation of transgenic animals for each gene of interest is impractical. Placing the doxycycline-inducible ("tet-on") promoter directed out of the end of the P transposable element produced a mobile, doxycycline-inducible promoter element, named PdL. PdL was mobilized to 228 locations in the genome and was found to generate conditional (doxycycline-dependent), dominant mutations at high frequency. The temporal control of gene overexpression allowed generation of mutant phenotypes specific to different stages of the life cycle, including metamorphosis and aging. Mutations characterized included inserts in the alpha-mannosidase II (dGMII), ash1, and pumilio genes. Novel phenotypes were identified for each gene, including specific developmental defects and increased or decreased life span. The PdL system should facilitate testing of a large fraction of Drosophila genes for overexpression and misexpression phenotypes at specific developmental and life cycle stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号