首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of homogalacturonans deficiency on the cell wall porosity of Arabidopsis thaliana QUA1 mutant was investigated using NMR measurements of protons mobility interpreted in terms of pore size variations at nanometer and micrometer scales. Isolation and purification of wild type and mutant stems and calli cell walls permitted to exacerbate the putative impact of the mutation on cellulose-hemicelluloses assembly in highly and poorly organised cell walls, respectively. NMR relaxation measurements of water and exchangeable biopolymer protons and self-diffusion processes of polyethylene glycol in walls informed about the porosity network density and heterogeneity. The role of pectins and proteins as well as the growth status of the cells on the wall porosity regulation are discussed.  相似文献   

2.
Studies have been made on the temperature dependence of both the hydraulic conductivity, Lp, and the THO diffusion coefficient, ω, for a series of cellulose acetate membranes (CA) of varying porosity. A similar study was also made of a much less polar cellulose triacetate membrane (CTA). The apparent activation energies, Ea, for diffusion across CA membranes vary with porosity, being 7.8 kcal/mole for the nonporous membrane and 5.5 kcal/mole for the most porous one. Ea for diffusion across the less polar CTA membrane is smaller than Ea for the CA membrane of equivalent porosity. Classical viscous flow, in which the hydraulic conductivity is inversely related to bulk water viscosity, has been demonstrated across membranes with very small equivalent pores. Water-membrane interactions, which depend upon both chemical and geometrical factors are of particular importance in diffusion. The implication of these findings for the interpretation of water permeability experiments across biological membranes is discussed.  相似文献   

3.
以防护林阶段定向经营理论为基础,对典型防护林种———农田防护林的防护成熟、经营阶段、更新方式、方法进行了研究讨论;通过对东北地区农田防护林长期调查积累资料的分析,确定了乡土杨和杂交杨(Populus spp.)农田防护林的初始防护成熟龄和终止防护成熟龄分别为16~24年和自然成熟龄,第一代农田防护林的更新龄为32~36年.以树木径级离散度、防护成熟龄和更新龄为主要依据定量划分了杨树农田防护林的3个经营阶段,并重点讨论了不同更新方式下3个经营阶段的变化情况,给出了维持农田防护林成熟状态的疏透度调控技术及其相关的林木分级依据与标准.同时为实现定向经营的目标,提出了各个经营阶段内应采取的系列经营管理措施.  相似文献   

4.
防护林阶段定向经营研究Ⅱ. 典型防护林种--农田防护林   总被引:4,自引:2,他引:2  
以防护林阶段定向经营理论为基础,对典型防护林种-农田防护林的防护成熟、经营阶段、更新方式、方法进行了研究讨论:通过对东北地区农田防护林长期调查积累资料的分析,确定了乡土杨和杂交杨(Populus spp.)农田防护林和初始防护成熟龄和终止防护成熟龄分别为16-24年和自然成熟龄,第一代农田防护要的更新龄为32-36年,以树木径级离散度,防护成熟龄和更新龄为主要依据定量划分了杨树农田防护林的3个经营阶段,并重点讨论了不同更新方式下3个经营阶段的变化情况,给出了维持农田防护林成熟状态的疏透度调控技术及其相关的林木分级依据与标准,同时为实现定向经营的目标,提出了各个经营阶段内应采取的系列经营管理措施。  相似文献   

5.
The maximum pore fluid pressures due to uniaxial compression are determined for both the vascular porosity (Haversian and Volkmann's canals) and the lacunar-canalicular porosity of live cortical bone. It is estimated that the peak pore water pressure will be 19 percent of the applied axial stress in the vascular porosity and 12 percent of the applied axial stress in the lacunar-canalicular porosity for an impulsive step loading. However, the estimated relaxation time for the vascular porosity (1.36 microseconds) is three orders of magnitude faster than that estimated for the lacunar-canalicular porosity (4.9 ms). Thus, under physiological loading, which has a stress rise time generally larger than 1 ms, pressures higher than the vascular pressure cannot be sustained in the vascular porosity due to the swift pressure relaxation in this porosity (unless the fluid drainage through the boundary is obstructed). The model also predicts a slight hydraulic stiffening of the bulk modulus due to longer draining time of the lacunar-canalicular porosity. The undrained bulk modulus is 6 percent higher than the drained bulk modulus in this case.  相似文献   

6.
Photosynthetic CO2 uptake in leaf mesophyll can be modelled in a general way using a second-order partial differential equation, which is derived and discussed and compared with existing models using finite series-parallel combinations of a few resistance elements.When mesophyll porosity is constant and when local CO2 uptake is proportional to intercellular CO2 concentration C, the equation takes the form Δ2C = α2C. Analytic solutions are given for this special case, with the boundary condition being equivalence of internal CO2 uptake with that moving through the stomates. These solutions show the importance of accounting for the three-dimensional nature of CO2 transport in the mesophyll, which most existing models do not do.The model is useful for exploring optimal geometry of leaves. Its implications for leaf thickness, stomatal size and spacing, and mesophyll porosity are discussed. In particular, it yields a prediction of optimal leaf thickness very close to values commonly occurring in nature.  相似文献   

7.
Pit membranes between xylem vessels have been suggested to have functional adaptive traits because of their influence on hydraulic resistance and vulnerability to embolism in plants. Observations of intervessel pit membranes in 26 hardwood species using electron microscopy showed significant variation in their structure, with a more than 25-fold difference in thickness (70-1892 nm) and observed maximum pore diameter (10-225 nm). In some SEM images, pit membrane porosity was affected by sample preparation, although pores were resolvable in intact pit membranes of many species. A significant relationship (r(2) = 0.7, P = 0.002) was found between pit membrane thickness and maximum pore diameter, indicating that the thinner membranes are usually more porous. In a subset of nine species, maximum pore diameter determined from SEM was correlated with pore diameter calculated from air-seeding thresholds (r(2) = 0.8, P < 0.001). Our data suggest that SEM images of intact pit membranes underestimate the porosity of pit membranes in situ. Pit membrane porosity based on SEM offers a relative estimate of air-seeding thresholds, but absolute pore diameters must be treated with caution. The implications of variation in pit membrane thickness and porosity to plant function are discussed.  相似文献   

8.
Compression of soil around roots   总被引:1,自引:0,他引:1  
Summary A simplified model is developed for soil compression around plant roots. The main assumptions are that the root volume is accommodated by loss of porosity in the surrounding soil; that there is a minimum soil porosity below which soil will not be compressed; and that the density decreases exponentially with distance from the roots surface with an exponent which is a constant multiple of the root diameter. These assumptions lead to simple, practical expressions for the soil porosity around roots and for the amounts of materials such as nutrients or organisms which lie within certain distances from a root surface.  相似文献   

9.
Native fibrin gel networks observed by 3D microscopy, permeation and turbidity   总被引:15,自引:0,他引:15  
Native fully hydrated fibrin gels formed at different fibrinogen and thrombin concentrations and at different ionic strengths were studied by confocal laser 3D microscopy, liquid permeation and turbidity. The gels were found to be composed of straight rod-like fiber elements that often came together at denser nodes. In gels formed at high fibrinogen concentrations, or with high amounts of thrombin, the spaces between the fibers decreased, indicating a decrease of gel porosity. The fiber strands were also shorter. Gel porosity decreased dramatically in gels formed at the high ionic strengths. Shorter fibers were observed and fiber swelling occurred at ionic strengths above 0.24. Quantitative parameters for gel porosity, fiber mass/length ratio and diameter were also derived by liquid permeation and turbidometric analyses of the gels. Permeation analysis showed that gel porosity (measured as Ks) decreased in gels formed at higher fibrin and thrombin concentrations in agreement with the porosity observed by microscopy. The turbidometric analysis showed good agreement with the permeation data for gels formed at various thrombin concentrations, but supported the permeation data more poorly in gels formed at different fibrinogen concentrations, especially above 2.5 mg/ml. Turbidometric analysis showed that the fiber mass/length ratio and diameter decreased in gels formed at ionic strength up to 0.24, as was seen in the permeation study. However, at higher ionic strengths swelling of the fibers was suggested from the gel turbidity data and this was also indicated by microscopy. These findings are discussed in relation to previous hydrodynamic and electron microscopic studies of fibrin gels.  相似文献   

10.
One-year-old clones ofPhragmites australis, Glyceria maxima, andTypha latifolia were subjected to different doses of piggery sewage added in flooded sand cultures for one growing season.Phragmites responded to increasing sewage doses by an increase in the shoot biomass and a decrease in root porosity and carbohydrate levels in rhizomes;Glyceria responded by a decrease in the biomass and depth penetration of the root system, and carbohydrate levels in rhizomes. In contrast,Typha increased both root porosity and carbohydrate levels in rhizomes. These findings are discussed in relationship to plant performance in sewage-polluted wetlands.  相似文献   

11.

We report immobilizing Nile Blue A, which is a cationic fluorescent dye emitting in the near-infrared region, in the porous silica layer on gold nanorod and its fluorescence enhancement by strengthened electromagnetic field based on surface plasmon resonance. The effect of the spacer corresponding to the silica layer on the metal-enhanced fluorescence effect is also discussed in detail. Hollow silica nanorod was in advance prepared, and then the silica layer was partly etched to increase the porosity for the improvement of the mass transfer. Subsequently, gold nanorod was fabricated in the restricted space of hollow silica nanorod. Finally, Nile Blue A was physically immobilized in the porous silica layer on gold nanorod through electrostatic interactions. The fluorescence enhancement of Nile Blue A based on surface plasmon resonance was semi-quantified by comparative experiments using hollow silica nanorod, which is exactly the same structure except for gold as silica-coated gold nanorod. Since our results demonstrated that the porosity degree of the silica layer significantly affected the fluorescence enhancement of Nile Blue A, it is hopeful that our design concept, distinct from the conventional one, can lay a foundation for further development of near-infrared fluorescence nanomaterials.

  相似文献   

12.
Eggshell porosity affects the metabolism and growth of the developing embryo and is likely, therefore, to influence blood-gas and acid-base status. PO2 in the airspace and in blood from the allantoic vein, PCO2 in the airspace and in blood from the allantoic artery and allantoic vein, and pH of blood from the allantoic artery and vein are all affected by shell porosity. Low porosity eggshells result in an increased retention of carbon dioxide within the egg, in partial compensation for which an increase in the level of bicarbonate in the blood is predicted. It is concluded that some of the wide variation in blood physiology data between eggs at the same stage of incubation, which has been recorded in the scientific literature, is the result of variation in shell porosity between eggs.  相似文献   

13.
Studies on diffusion of NAD and hemoglobin from calcium and barium gels are reported where alginate grade, concentration, and gel dimensions were varied. These show that NAD diffusion characteristics are unaffected by alginate and ion concentrations; however, hemoglobin diffusion is affected by alginate concentration. Both hemoglobin and NAD diffusion patterns were shown to be affected by alginate gel dimensions. Studies are reported that show that polymannuronic alginate gels posses good porosity characteristics while polyguluronic alginates from gels with lower porosity, specifically with respect to high-molecular-weight compounds. These findings are discussed with the view to the use of alginate gels for immobilization, solids separation, and diffusion chromatography techniques.  相似文献   

14.
东北地区农田防护林结构对林网内积雪分布格局的影响   总被引:2,自引:0,他引:2  
东北地区冬季降雪是农田土壤水分的重要来源.探索农田防护林结构对林网内积雪分布格局的影响,是经营实践中如何依据疏透度指标来指导农田防护林结构调控的关键问题.通过由3个不同疏透度林带组成的林网内积雪深度的测定,对农田积雪分布格局进行了研究.结果表明,林网的结构对农田积雪分布产生较大影响.疏透度不同的林网内积雪分布的空间格局有明显差别。而且疏透度差异越大。分布格局的差异越显著.其中,在疏透度为φ2w=0.579、φ2s=0.268的林网内,农田积雪分布比较均匀,总体上整个农田积雪深度较为一致.这样,可依据疏透度与积雪分布格局的这种关系。指导冬季防护林带的结构调控与优化经营.  相似文献   

15.
The physical parameters of cellulose such as surface area and porosity are important in the development of cellulose composites which may contain valuable additives which bind to cellulose. In this area, the use of acid hydrolyzed nano-dimensional cellulose nanowhiskers (CNWs) has attracted significant interest, yet the surface area and porosity of these materials have not been explored experimentally. The objective of this work was to characterize the surface area and porosity of CNWs from different origins (plant cotton/bacterium Gluconacetobacter xylinus) and different acid treatments (H2SO4/HCl) by N2 adsorption; as well as to compare surface area and porosity of bacterial cellulose synthesized by static and agitated cultures. Our results showed that CNWs produced from H2SO4/HCl exhibited significantly increased surface area and porosity relative to starting material cotton fiber CF11. Micropores were generated in HCl hydrolyzed CNWs but not in H2SO4 hydrolyzed CNWs. Bacterial CNWs exhibited larger surface area and porosity compared to plant CNWs. Cellulose synthesized by G. xylinus ATCC 700178 from agitated cultures also exhibited less surface area and porosity than those from static cultures.  相似文献   

16.
1. The method described by Elford for the preparation of graded collodion membranes suitable for ultrafiltration was found to give excellent results, and his findings are fully confirmed. 2. A formula is given for the preparation of collodion from which satisfactory membranes of graded porosity can be prepared. 3. The technique and apparatus used in the preparation, and standardization of membranes are described in detail. 4. The technique and apparatus required for ultrafiltration experiments are described, and some drawbacks encountered in the experiments are discussed. 5. The results of ultrafiltration experiments show that the pores of the membranes are remarkably uniform in size.  相似文献   

17.
The extent to which increased intracortical porosity affects the fracture properties of aging and osteoporotic bone is unknown. Here, we report the development and application of a microcomputed tomography based finite element approach that allows determining the effects of intracortical porosity on bone fracture by blocking all other age-related changes in bone. Previously tested compact tension specimens from human tibiae were scanned using microcomputed tomography and converted to finite element meshes containing three-dimensional cohesive finite elements in the direction of the crack growth. Simulations were run incorporating age-related increase in intracortical porosity but keeping cohesive parameters representing other age-related effects constant. Additional simulations were performed with reduced cohesive parameters. The results showed a 6% decrease in initiation toughness and a 62% decrease in propagation toughness with a 4% increase in porosity. The reduction in toughnesses became even more pronounced when other age-related effects in addition to porosity were introduced. The initiation and propagation toughness decreased by 51% and 83%, respectively, with the combined effect of 4% increase in porosity and decrease in the cohesive properties reflecting other age-related changes in bone. These results show that intracortical porosity is a significant contributor to the fracture toughness of the cortical bone and that the combination of computational modeling with advanced imaging improves the prediction of the fracture properties of the aged and the osteoporotic cortical bone.  相似文献   

18.
Abstract. Oxygen uptake characteristics of the roots of three Rumex species were compared, and related to kinetics of the respiratory system and to root anatomy. The observed differences could not be explained by differences in fundamental characteristics of the oxygen uptake system: with all three species, cytochrome-mediated respiration contributed 70% and cyanide-insensitive (alternative) respiration 30% of the total respiration rate, and apparent Km values of cytochrome oxidase were lower than those obtained for the alternative oxidase in all cases. However, differences in critical oxygen pressure for respiration (COPR) and in apparent Km for oxygen, were strongly correlated with differences in root porosity and root diameter. Km(O2) values at high and low temperatures were determined, and from Arrhenius plots of oxygen uptake rates between 11 and 32°C, the role of diffusional impedance could be estimated. Root respiration of Rumex maritimus and R. crispus , both with high root porosity, but differing in root diameter, had a low Km for oxygen (3–7 mmol m−3). In contrast with this were the responses of R. thvrsiflorus , which has thin roots but low root porosity: a high Km (10-20 mmol m−3) was found at all temperatures. The role of diffusional impedance as a function of temperature in oxygen uptake rate by the three species is discussed and related to the differential resistance of the species towards flooding.  相似文献   

19.
The pore system within the thalli of 13 lichen taxa belonging to the family Umbilicariaceae has been studied by means of mercury intrusion porosimetry. A characteristic bimodal pore size distribution with a central depression around 0.05 μm of equivalent pore radius was obtained in all lichen samples. However, clear differences were found among the pore size distributions of each lichen taxa. The total thallus porosity was undoubtedly related to the anatomy of the medulla. In general, a radial plectenchymatic medulla conferred larger porosity to the thallus than an arachnoidal one. Maximum thallus water content closely depended on the total thallus porosity in the five lichens possessing rhizinomorphs. The species with a similar type of medulla could be grouped together in a multivariate analysis that considered three porosimetric parameters and the maximum thallus water content. Umbilicaria cinereorufescens was the most distinct species, with the lowest values of total porosity and water storage capacity and the largest value of thallus density, apparently due to its scleroplectenchymatic medulla. The pore size distribution existing inside the thallus of the species studied is discussed in relation to the often opposing problems of CO2 exchange and optimal water relations. Some results pointed to a large influence of the micropores (<0.05 μm) on the water storage capacity of the thallus, while the macropores would have a more important role in gas exchange.  相似文献   

20.
Fracture strength of pharmaceutical compacts varies even for nominally identical samples, which directly affects compaction, comminution, and tablet dosage forms. However, the relationships between porosity and mechanical behavior of compacts are not clear. Here, the effects of porosity on fracture strength and fracture statistics of microcrystalline cellulose compacts were investigated through diametral compression tests. Weibull modulus, a key parameter in Weibull statistics, was observed to decrease with increasing porosity from 17 to 56 vol.%, based on eight sets of compacts at different porosity levels, each set containing ∼50 samples, a total of 407 tests. Normal distribution fits better to fracture data for porosity less than 20 vol.%, whereas Weibull distribution is a better fit in the limit of highest porosity. Weibull moduli from 840 unique finite element simulations of isotropic porous materials were compared to experimental Weibull moduli from this research and results on various pharmaceutical materials. Deviations from Weibull statistics are observed. The effect of porosity on fracture strength can be described by a recently proposed micromechanics-based formula.Key words: diametral compression test, finite element simulations, normal distribution, reliability, Weibull modulus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号