首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lead salt method introduced by Wachstein and Meisel (12) for the cytochemical demonstration of ATPase activity was modified and used to determine sites of activity on red cell ghost membranes. Preliminary studies showed that aldehyde fixation and standard concentrations of the capture reagent Pb(NO3)2 resulted in marked inhibition of the ATPase activity of these membranes. By lowering the concentration of Pb2+ and incubating unfixed red cell ghosts, over 50% of the total ATPase activity, which included an ouabain-sensitive, Na-K-activated component, could be demonstrated by quantitative biochemical assay. Cytochemical tests, carried out under the same conditions, gave a reaction product localized exclusively along the inner surfaces of the ghost membranes for both Mg-ATPase and Na-K-ATPase. These findings indicate that the ATPase activity of red cell ghosts results in the release of Pi on the inside of the ghost membrane at sites scattered over its inner aspect. There were no deposits of reaction product on the outer surface of the ghost membrane, hence no indication that upon ATP hydrolysis Pi is released outside the ghosts. Nor was there any clear difference in the localization of reaction product of Mg-ATPase as opposed to that of Na-K-ATPase.  相似文献   

2.
Approximately 98% of turkey erythrocyte phospholipase C (PLC) is cytosolic and is released by hypotonic lysis of the cells and extensive washing of the resultant erythrocyte ghosts. Well washed turkey erythrocyte ghosts retain a fraction of tightly associated PLC, which is activated by the P2y-purinergic receptor and G-protein present in ghost membranes. The particulate PLC is sufficient to couple to all the available purinergic receptor-regulated G-protein. In contrast to ghosts, turkey erythrocyte plasma membrane preparations contain no detectable PLC. To investigate the subcellular location of the ghost-associated PLC, cytoskeletons were prepared by Triton X-100 extraction of turkey erythrocyte ghosts. The ghost-associated PLC was quantitatively recovered in cytoskeleton preparations. Cytoskeleton-associated PLC was solubilized by sodium cholate extraction, partially purified, and shown to reconstitute with PLC-free plasma membrane preparations in an agonist and guanine nucleotide-dependent fashion, indicating that the cytoskeleton-associated PLC is G-protein-regulated. Dissociation of erythrocyte ghost cytoskeletons with the actin-binding protein DNase 1 resulted in a dose-dependent inhibition of agonist and guanine nucleotide-stimulated PLC responses in ghosts and caused release of PLC from ghost or cytoskeleton preparations. These data demonstrate the specific association of a receptor and G-protein-regulated PLC with a component of the detergent-insoluble cytoskeleton and indicate that the integrity of the actin cytoskeleton is important for localization and effective coupling of PLC to the relevant G-protein.  相似文献   

3.
Human erythrocyte membranes (ghosts) from acid/citrate/dextrose preserved blood were digested with trypsin (protein/trypsin = 100:1) under hypotonic conditions and then analyzed by SDS-polyacrylamide gel electrophoresis. After digestion for about 20-30 s at 0 degree C, only ankyrin had disappeared and other bands including spectrin, actin, band 4.1 and band 3 remained intact. This observation was supported by electron micrographs showing that the horizontally disposed, filamentous structure was a little apart from the lipid bilayer and its components were not destroyed. In contrast to intact ghosts, treatment with chlorpromazine, or Mg-ATP did not induce shape change in these trypsin-treated ghosts. The number of transformable cells correlated closely with the amount of remaining ankyrin in the SDS-polyacrylamide gel electrophoresis pattern. Furthermore, the chlorpromazine- and Mg-ATP-induced decreases in viscosity of suspensions of erythrocyte ghosts were also prevented by trypsin treatment for 20-30 s at 0 degree C. These findings suggest that ankyrin plays an important role in the change in shape and deformability of erythrocyte ghosts. The molecular mechanism of drug-induced shape change and the role of undermembrane structure in regulating erythrocyte shape and deformability are discussed.  相似文献   

4.
Characterization of the functional domains of Bacillus anthracis protective antigen (PA, 83-kDa), the common cellular binding molecule for both anthrax edema toxin and anthrax lethal toxin, is important for understanding the mechanism of entry and action of the anthrax toxins. In this study, we generated both biologically active (facilitates killing of J774A.1 cells in combination with lethal factor, LF) and inactive preparations of PA by protease treatment. Limited proteolytic digestion of PA in vitro with trypsin generated a 20-kDa fragment and a biologically active 63-kDa fragment. In contrast, limited digestion of PA with chymotrypsin yielded a preparation containing 37- and 47-kDa fragments defective for biological activity. Treatment with both chymotrypsin and trypsin generated three major fragments, 20, "17," and 47 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This PA preparation was also biologically inactive. To investigate the nature of the defect resulting from chymotrypsin treatment, we assayed PA preparations for the ability to bind to the cellular receptor and to bind and internalize 125I-LF. All radiolabeled PA preparations bound with specificity to J774A.1 cells and exhibited affinities similar to native 83-kDa PA. Once bound to the cell surface receptor, both trypsin-treated PA and chymotrypsin/trypsin-treated PA specifically bound 125I-LF with high affinity. Finally, these PA preparations delivered 125I-LF to a Pronase-resistant cellular compartment in a time- and temperature-dependent fashion. Thus, the biological defect exhibited by chymotrypsin-treated PA is not at the level of cell binding or internalization but at a step later, such as toxin routing or processing by J774A.1 cells. These protease-treated preparations of PA should prove useful in both elucidating the intracellular processing of anthrax lethal toxin and determining the structure-function relationship of PA and LF.  相似文献   

5.
The exposure of the carboxyl-terminal of the Band 3 protein of human erythrocyte membranes in intact cells and membrane preparations to proteolytic digestion was determined. Carboxypeptidase Y digestion of purified Band 3 in the presence of non-ionic detergent released amino acids from the carboxyl-terminal of Band 3. The release of amino acids was very pH dependent, digestion being most extensive at pH 3, with limited digestion at pH 6 or above. The 55,000 dalton carboxyl-terminal fragment of Band 3, generated by mild trypsin digestion of ghost membranes, had the same carboxyl-terminal sequence as intact Band 3, based on carboxypeptidase Y digestion. Treatment of intact cells with trypsin or carboxypeptidase Y did not release any amino acids from the carboxyl-terminal of Band 3. In contrast, carboxypeptidase Y readily digested the carboxyl-terminal of Band 3 in ghosts that were stripped of extrinsic membrane proteins by alkali or high salt. This was shown by a decrease in the molecular weight of a carboxyl-terminal fragment of Band 3 after carboxypeptidase Y digestion of stripped ghost membranes. No such decrease was observed after carboxypeptidase Y treatment of intact cells. In addition, Band 3 purified from carboxypeptidase Y-treated stripped ghost membranes had a different carboxyl-terminal sequence from intact Band 3. Cleavage of the carboxyl-terminal of Band 3 was also observed when non-stripped ghosts or inside-out vesicles were treated with carboxypeptidase Y. However, the digestion was less extensive. These results suggest that the carboxyl-terminal of Band 3 may be protected from digestion by its association with extrinsic membrane proteins. We conclude, therefore, that the carboxyl-terminal of Band 3 is located on the cytoplasmic side of the red cell membrane. Since the amino-terminal of Band 3 is also located on the cytoplasmic side of the erythrocyte membrane, the Band 3 polypeptide crosses the membrane an even number of times. A model for the folding of Band 3 in the erythrocyte membrane is presented.  相似文献   

6.
In contrast to everted mitochondrial inner membrane vesicles and eubacterial plasma membrane vesicles, the ATPase activity of chloroplast ATP synthase in thylakoid membranes is extremely low. Several treatments of thylakoids that unmask ATPase activity are known. Illumination of thylakoids that contain reduced ATP synthase (reduced thylakoids) promotes the hydrolysis of ATP in the dark. Incubation of thylakoids with trypsin can also elicit higher rates of ATPase activity. In this paper the properties of the ATPase activity of the ATP synthase in thylakoids treated with trypsin are compared with those of the ATPase activity in reduced thylakoids. The trypsin-treated membranes have significant ATPase activity in the presence of Ca2+, whereas the Ca2+-ATPase activity of reduced thylakoids is very low. The Mg2+-ATPase activity of the trypsinized thylakoids was only partially inhibited by the uncouplers, at concentrations that fully inhibit the ATPase activity of reduced membranes. Incubation of reduced thylakoids with ADP in Tris buffer prior to assay abolishes Mg2+-ATPase activity. The Mg2+-ATPase activity of trypsin-treated thylakoids was unaffected by incubation with ADP. Trypsin-treated membranes can make ATP at rates that are 75–80% of those of untreated thylakoids. The Mg2+-ATPase activity of trypsin-treated thylakoids is coupled to inward proton translocation and 10 mM sulfite stimulates both proton uptake and ATP hydrolysis. It is concluded that cleavage of the γ subunit of the ATP synthase by trypsin prevents inhibition of ATPase activity by the ε subunit, but only partially overcomes inhibition by Mg2+ and ADP during assay.  相似文献   

7.
The temperature dependence of ATPase activities and stearic acid spin label motion in red blood cells of normal and MH-susceptible pigs have been examined. Arrhenius plots of red blood cell ghost Ca-ATPase and calmodulin-stimulable Ca-ATPase activities were identical for both normal and MH erythrocyte ghosts. Arrhenius plots of Mg-ATPase activity exhibited a break (defined as a change in slope) at 24 degrees C in both MH and normal erythrocyte ghosts. However, below 24 degrees C the apparent activation energy for this activity was less in MH than normal ghosts. To determine whether breaks in ATPase Arrhenius plots could be correlated with changes in the physical state of the red blood cell membrane, the spin label 16-doxyl-stearate was introduced into the bilayer of both erythrocyte ghosts and red blood cells. With both ghosts and intact cells, at each temperature examined, the mobility of the probe in the lipid bilayer, as measured by electron paramagnetic resonance, was greater in normal than in MH membranes. While there were no breaks in Arrhenius plots for probe motion in the erythrocyte ghosts, the apparent activation energy for probe motion was significantly greater in normal than in MH ghost membranes. While there was no break in the Arrhenius plot of probe motion in normal intact red blood cell membranes, there were breaks in the Arrhenius plot of probe motion at both 24 and 33 degrees C in intact MH red blood cell membranes. Based on the altered temperature dependence of Mg-ATPase activity and spin probe motion in membranes derived from MH red blood cells, we conclude that there may be a generalized membrane defect in MH pigs which is reflected in the red blood cell as an altered membrane composition or organization.  相似文献   

8.
Chloroplast membranes contain a light-harvesting pigment-protein complex (LHC) which binds chlorophylls a and b. A mild trypsin digestion of intact thylakoid membranes has been utilized to specifically alter the apparent molecular weights of polypeptides of this complex. The modified membrane preparations were analyzed for altered functional and structural properties. Cation-induced changes in room temperature fluorescence intensity and low temperature chlorophyll fluorescence emission spectra, and cation regulation of the quantum yield of photosystem I and II partial reactions at limiting light were lost following the trypsin-induced alteration of the LHC. Electron microscopy revealed that cations can neither maintain nor promote grana stacking in membranes which have been subjected to mild trypsin treatment. Freeze-fracture analysis of these membranes showed no significant differences in particle density or average particle size of membrane subunits on the EF fracture face; structural features of the modified lamellae were comparable to membranes which had been unstacked in a “low salt” buffer. Digitonin digestion of trypsin-treated membranes in the presence of cations followed by differential centrifugation resulted in a subchloroplast fractionation pattern similar to that observed when control chloroplasts were detergent treated in cation-free medium. We conclude that: (a) the initial action of trypsin at the thylakoid membrane surface of pea chloroplasts was the specific alteration of the LHC polypeptides, (b) the segment of the LHC polypeptides which was altered by trypsin is necessary for cation-mediated grana stacking and cation regulation of membrane subunit distribution, and (c) cation regulation of excitation energy distribution between photosystem I and II involves the participation of polypeptide segments of the LHC which are exposed at the membrane surface.  相似文献   

9.
Outer membrane derived 'ghosts' can be readily generated from both smooth and deep rough (heptose-deficient LPS) strains of Escherichia coli 08. MORPHOlogical and biochemical studies confirmed that 'ghosts' of both strains are composed of protein (four major proteins), LPS, and phospholipid (cardiolipin and phosphatidylethanolamine) in the form of a single membrane of roughly the same shape as intact normal cells. The ghost membrane cleaves only slightly in freeze-etch preparations of ghosts derived from the smooth strain as compared to the extensive cleavage plane of ghosts derived from the rough strain. The asymmetrical distribution of ghost proteins was visualized, by critical point drying and shadowing with platinum, as a relatively smooth outer surface with some discernible particles (10-15 nm) and an extremely particulate inner surface (10-15-mm particles. Ghosts derived from the smooth strain retained their structure following chloroform-methanol extraction, while ghosts derived from the rough strain fragmented with chloroform-methanol extraction. Evidence is presented that LPS-protein interactions as well as protein-protein interactions are significant in maintaining the ghost structure.  相似文献   

10.
The intact, amphipatic form of cytochrome b5 could bind to unsealed ghosts, but not to resealed ghosts, suggesting that the cytochrome could bind only to the inner (cytoplasmic) surface of the ghost membrane. This was further confirmed by the finding that the cytochrome could bind to closed, inside-out vesicles prepared from the ghosts. This asymmetric binding was not due to the exclusive localization of sialic acid and sugar chains on the outer surface of the ghosts membrane, because the cytochrome could not bind to ghosts even after enzymatic removal of these components. Although liposomes consisting of phosphatidylcholine or both phosphatidylcholine and sphingomyelin could effectively bind the cytochrome, this binding capacity was progressively decreased as increasing amount of cholesterol was included in the composition of phosphatidylcholine liposomes. Removal of cholesterol from resealed ghosts by incubation with egg phosphatidylcholine liposomes resulted in the binding of cytochrome b5 to the outer surface of the treated ghosts. The possibility is discussed that the asymmetric binding is due to preferential localization of cholesterol in the outer leaflet of the lipid bilayer that constitutes the ghost membrane.  相似文献   

11.
Detergent-resistant membrane raft fractions have been prepared from human, goat, and sheep erythrocyte ghosts using Triton X-100. The structure and thermotropic phase behaviour of the fractions have been examined by freeze-fracture electron microscopy and synchrotron X-ray diffraction methods. The raft fractions are found to consist of vesicles and multilamellar structures indicating considerable rearrangement of the original ghost membrane. Few membrane-associated particles typical of freeze-fracture replicas of intact erythrocyte membranes are observed in the fracture planes. Synchrotron X-ray diffraction studies during heating and cooling scans showed that multilamellar structures formed by stacks of raft membranes from all three species have d-spacings of about 6.5 nm. These structures can be distinguished from peaks corresponding to d-spacings of about 5.5 nm, which were assigned to scattering from single bilayer vesicles on the basis of the temperature dependence of their d-spacings compared with the multilamellar arrangements. The spacings obtained from multilamellar stacks and vesicular suspensions of raft membranes were, on average, more than 0.5 nm greater than corresponding arrangements of erythrocyte ghost membranes from which they were derived. The trypsinization of human erythrocyte ghosts results in a small decrease in lamellar d-spacing, but rafts prepared from trypsinized ghosts exhibit an additional lamellar repeat 0.4 nm less than a lamellar repeat coinciding with rafts prepared from untreated ghosts. The trypsinization of sheep erythrocyte ghosts results in the phase separation of two lamellar repeat structures (d=6.00; 5.77 nm), but rafts from trypsinized ghosts produce a diffraction band almost identical to rafts from untreated ghosts. An examination of the structure and thermotropic phase behaviour of the dispersions of total polar lipid extracts of sheep detergent-resistant membrane preparations showed that a reversible phase separation of an inverted hexagonal structure from coexisting lamellar phase takes place upon heating above about 30 degrees C. Non-lamellar phases are not observed in erythrocytes or detergent-resistant membrane preparations heated up to 55 degrees C, suggesting that the lamellar arrangement is imposed on these membrane lipids by interaction with non-lipid components of rafts and/or that the topology of lipids in the erythrocyte membrane survives detergent treatment.  相似文献   

12.
Pigs immunized with Actinobacillus pleuropneumoniae ghosts or a formalin-inactivated bacterin were found to be protected against clinical disease in both vaccination groups, whereas colonization of the lungs with A. pleuropneumoniae was only prevented in ghost-vaccinated pigs. Bacterial ghosts are empty cell envelopes created by the expression of a cloned bacteriophage lysis gene and, unlike formalin-inactivated bacteria, suffer no denaturing steps during their production. This quality may lead to a superior presentation of surface antigens to the immune system. Analysis by SDS-PAGE and immunoblotting of the two vaccine preparations revealed different contents of antigenic proteins. In order to better understand the immunogenic properties of A. pleuropneumoniae ghosts and formalin-inactivated bacteria, we compared the serum antibody response induced in both treatment groups. Immune sera were tested on whole cell antigen or purified virulence factors including outer membrane protein preparations (OMPs), outer membrane lipoprotein OmlA1, transferrin binding proteins (TfbA1, TfbA7 and TfbB) and Apx toxins (ApxI, II and III). SDS-PAGE and immunoblots revealed no specific antibody response against the single virulence factors tested in any vaccinated animal. The two vaccination groups showed different recognition patterns of whole cell antigen and OMP-enriched preparations. A 100 kDa protein was recognized significantly stronger by ghost-vaccinated pigs than convalescent pigs. This unique antibody population induced by ghosts could play a determining role in the prevention of lung colonization. The same 100 kDa antigen was recognized by ghost-sera in homologous as well as heterologous serotype A. pleuropneumoniae protein preparations. Indications for a crossprotective potential in the ghost vaccine were supported by studies on rabbit hyperimmune sera.  相似文献   

13.
Commercially available preparations of phospholipase C from Clostridium perfringens are commonly contaminated with theta haemolysin, one of a group of bacterial haemolysins called oxygen labile (O-labile) haemolysins. Treatment of erythrocyte ghosts and a mixed lipid dispersion containing cholesterol with commercially available phospholipase C in the absence of Ca-2+ and the presence of phosphate buffer and/or EDTA resulted in the formation and release of ring or arc-shaped structures. Highly purified phospholipase C, free of theta-haemolysin, produced no changes in the morphology of erythrocyte ghosts or lipid dispersions in the presence of phosphate or EDTA, but caused the formation of typical diglyceride droplets in the presence of Ca-2+ in the absence of these inhibitors. Ring structures, identical to those caused by commercial phospholipase C, were formed on addition of highly purified theta-haemolysin to erythrocyte ghost membranes, lipid dispersions containing cholesterol and cholesterol dispersions, but not on treatment of membranes from Micrococcus lysodeikticus. Heat-inactivated O-haemolysin (60 degrees C for 10 min) produced no such effects. The dimensions of rings and arcs displayed heterogeneity. The outside diameters in various preparations varied from approx. 27-58 nm with border thickness of 4.1-7.8 nm.  相似文献   

14.
Detergent-resistant membrane raft fractions have been prepared from human, goat, and sheep erythrocyte ghosts using Triton X-100. The structure and thermotropic phase behaviour of the fractions have been examined by freeze-fracture electron microscopy and synchrotron X-ray diffraction methods. The raft fractions are found to consist of vesicles and multilamellar structures indicating considerable rearrangement of the original ghost membrane. Few membrane-associated particles typical of freeze-fracture replicas of intact erythrocyte membranes are observed in the fracture planes. Synchrotron X-ray diffraction studies during heating and cooling scans showed that multilamellar structures formed by stacks of raft membranes from all three species have d-spacings of about 6.5 nm. These structures can be distinguished from peaks corresponding to d-spacings of about 5.5 nm, which were assigned to scattering from single bilayer vesicles on the basis of the temperature dependence of their d-spacings compared with the multilamellar arrangements. The spacings obtained from multilamellar stacks and vesicular suspensions of raft membranes were, on average, more than 0.5 nm greater than corresponding arrangements of erythrocyte ghost membranes from which they were derived. The trypsinization of human erythrocyte ghosts results in a small decrease in lamellar d-spacing, but rafts prepared from trypsinized ghosts exhibit an additional lamellar repeat 0.4 nm less than a lamellar repeat coinciding with rafts prepared from untreated ghosts. The trypsinization of sheep erythrocyte ghosts results in the phase separation of two lamellar repeat structures (d = 6.00; 5.77 nm), but rafts from trypsinized ghosts produce a diffraction band almost identical to rafts from untreated ghosts. An examination of the structure and thermotropic phase behaviour of the dispersions of total polar lipid extracts of sheep detergent-resistant membrane preparations showed that a reversible phase separation of an inverted hexagonal structure from coexisting lamellar phase takes place upon heating above about 30 °C. Non-lamellar phases are not observed in erythrocytes or detergent-resistant membrane preparations heated up to 55 °C, suggesting that the lamellar arrangement is imposed on these membrane lipids by interaction with non-lipid components of rafts and/or that the topology of lipids in the erythrocyte membrane survives detergent treatment.  相似文献   

15.
To identify the specific component(s) in the target membrane involved in fusion of vesicular stomatitis virus (VSV), we examined the interaction of the virus with human erythrocyte membranes with asymmetric and symmetric bilayer distributions of phospholipids. Fusion was monitored spectrofluorometrically by the octadecylrhodamine dequenching assay. Fusion of VSV with lipid-symmetric erythrocyte ghosts was rapid at 37 degrees C and low pH, whereas little or no fusion was observed with lipid-asymmetric ghosts. Conversion of phosphatidylserine in the lipid-symmetric ghost membrane to phosphatidylethanolamine by means of the enzyme phosphatidylserine decarboxylase did not alter the target membrane's susceptibility to VSV fusion. Spin-labeled phospholipid analogues with phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine headgroups incorporated into the outer leaflet of lipid-asymmetric erythrocytes did not render those membranes fusogenic. Electron spin resonance spectra showed an increased mobility of a phosphatidylcholine spin-label incorporated into the outer leaflet of lipid-symmetric erythrocyte ghosts as compared to that of lipid-asymmetric ghosts. These results indicate that the susceptibility to VSV fusion is not dependent on any particular phospholipid but rather is related to packing characteristics of the target membrane.  相似文献   

16.
Washed human erythrocyte membranes can recover impermeability to macromolecules upon warming in solutions of sufficient ionic strength. This ability is rapidly lost from most ghost preparations in dilute salt solution at temperatures of 15°C or higher. Divalent cations both reseal ghosts in the absence of high ionic strength and prevent loss of resealing ability. The effective concentrations are 40 μM for Ca2+ and 200 μM for Mg2+. The loss of resealing ability is associated with the release of spectrin polypeptides from the inner surface of the membrane. In ghost preparations that have not become irreversibly leaky, or in the presence of Ca2+, loss of spectrin does not occur. These results suggest that an intact spectrin network is required for resealing to macromolecules, and divalent cations stabilize this network. In light of this information, the effect of temperature on resealing kinetics is described.  相似文献   

17.
We have examined yeast cell ghost preparations to assess their value in obtaining plasma membrane proteins. Ghosts prepared by two methods involving stabilization of spheroplast envelopes had similar protein patterns by two-dimensional gel electrophoresis, and approximately 200 proteins were resolved. Spheroplasts were lactoperoxidase iodinated, and recovery of label in ghost preparations was greater than 60%. Spheroplasts appeared to be impermeable to the lactoperoxidase reagents as judged by an examination of two-dimensional gel electrophoretic patterns of ghost proteins that had been iodinated in spheroplasts or in unsealed ghosts. Spheroplasts were also impermeable to pronase proteases. Surface iodination and surface proteolysis allowed us to identify exposed ghost proteins; the major ghost glycoprotein was exposed in spheroplasts.Two-dimensional patterns of ghost proteins were not heavily contaminated (?25% of all proteins) by proteins present in soluble or promitochondrial fractions, and estimates of surface label and total cell protein recovery suggested that the ghost fraction represents a cell envelope enrichment of 8–10 fold over whole cells.Resolution of ghost proteins by two-dimensional gel electrophoresis appears to be a powerful aid toward identifying membrane proteins.  相似文献   

18.
19.
Polyclonal antibodies were raised in rabbits against a synthetic peptide which corresponds to the 12-amino acid carboxyl-terminal sequence of murine erythrocyte Band 3. Immunoblots of ghost membrane proteins showed that the antibody specifically recognized murine or rat Band 3 but not human or canine Band 3. The antibody also bound to murine ghost membranes applied directly to nitrocellulose but not to human ghost membranes. This shows that the carboxyl terminus of Band 3 is available for antibody binding in ghost membranes and that the carboxyl-terminal sequences of human and mouse Band 3 are not identical. The specificity of the antibody for the carboxyl terminus of Band 3 was confirmed by the loss of antibody binding after digestion of detergent-solubilized ghost membrane proteins with carboxypeptidase Y. In addition, carboxyl-terminal fragments of Band 3 generated by protease treatment of cells or ghost membranes were positive on immunoblots while amino-terminal fragments were negative. In contrast, protease-treated stripped ghost membranes did not contain a carboxyl-terminal fragment of Band 3 that was detectable on immunoblots. The carboxyl terminus of Band 3 was localized to the cytoplasmic side of the erythrocyte membrane since antibody binding as determined by immunofluorescence occurred in ghosts and permeabilized cells but not in intact cells. In addition, competition studies using enzyme-linked immunosorbent assays and immunoblots showed that cells and resealed ghosts competed poorly for antibody compared to ghost membranes, inside-out vesicles, or albumin-conjugated peptide.  相似文献   

20.
The effect of trypsin treatment on the solubilized coupling factorlatent ATPase from Mycobacterium phlei was studied. Maximal stimulation of ATPase activity by trypsin is accompanied by a decrease of about 20,000 daltons in molecular weight and a complete loss of the ability to rebind to depleted membranes. There is also conversion of the A subunit of the latent enzyme to an A″ form via an A′ intermediate. The increase in ATPase activity, loss of coupling factor activity, and loss of rebinding capacity changed in a different manner in response to partial degrees of trypsin activation, indicating that each of these functions may have a different structural requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号