首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the developmental change by which autonomic neural activity associated respiration modulates spontaneous firing rate of sinus (SA) node and atrioventricular (AV) conduction in premature infants born with low birth weight (LBWI). The purpose of this study was to clarify whether variation of PR is correlated with that of PP or those are independent in LBWI with immature autonomic nervous system. We investigated, therefore, whether there are spontaneous functional differences in the innervation of SA and AV nodes. Further, we evaluated the maturation of autonomic nervous system progressing in the period, on the day of birth (Day 0) to approximately one month after the birth (Month 1). This study was performed in thirteen LBWI during deep sleep. EEG, EOG, ECG, respiratory waves were digitized on line, spontaneous firing cycle of SA node (PP), and AV nodal conduction time (PR) that were recorded on Day 0 and Month 1. Then, the data were analyzed as follows: 1) correlations among the means and standard deviations (SD) of PP, PR and RR, 2) variance evaluation of PP and PR intervals by Lorenz plot analysis method, 3) correlation analysis among PP, PR and RR intervals by linear regression method and 4) frequency analysis for PP and PR intervals by high-speed Fourier transform method (FFT) and determination of frequency density. The PP interval decreased as growing in the period. Contrary PR interval increased. In LBWI, the automatic nervous activities including parasympathetic nerve activity for spontaneous firing cycle of SA node and ventricular excitation cycle on Month 1 were higher than Day 0. It was assumed that the vagal nerve activity for the AV conduction was enhanced. However, there was no significant change in linear regression slope for the spontaneous firing cycle of SA node and the AV conduction time. Postnatal LF/HF changes for PP and PR obtained by frequency analysis, were opposite. Therefore, it was suggested that the maturity of autonomic nervous system progresses in the period, Day 0 to approximately Month 1, but the variations in PP and PR are independent each other.  相似文献   

2.
A nonlinear model of the atrioventricular (AV) node physiology in atrial fibrillation (AF) is proposed based on three assumptions: (1) normal distribution of atrial impulses, (2) right-skewed distribution of R-R intervals, (3) increase in the refractory period of the AV node due to rapid bombardment from the atria. Simulation resulted in the following conclusions, all of which are in agreement with previous experience: (1) the entry speed of atrial impulses into the AV node in AF is inversely proportional to the ventricular rate, (2) the autocorrelation function of R-R intervals is zero at all delays, (3) a newly introduced index, sign of first difference, has a negative autocorrelation function at the first delay and zero ones at all others. In spite of its simplicity, the model is able to explain what happens in atrial premature complexes, sinus tachycardia and sinus bradycardia. Different rhythms, some of which rarely seen clinically, can be reproduced by changing input patterns or by slightly manipulating the model parameters. In order to make possible a long irregular time series of R-R interval, aperiodic changes in atrial signals are shown to be necessary. In conclusion, we proposed a simple model for the AV node physiology capable of explaining the previously known facts about AF as well as predicting interesting properties of some other supraventricular arrhythmias.  相似文献   

3.
Some parasympathetic ganglionic cells are located in the epicardial fat pad between the medial superior vena cava and the aortic root (SVC-Ao fat pad) of the dog. We investigated whether the ganglionic cells in the SVC-Ao fat pad control the right atrial contractile force, sinus cycle length (SCL), and atrioventricular (AV) conduction in the autonomically decentralized heart of the anesthetized dog. Stimulation of both sides of the cervical vagal complexes (CVS) decreased right atrial contractile force, increased SCL, and prolonged AV interval. Stimulation of the rate-related parasympathetic nerves to the sinoatrial (SA) node (SAPS) increased SCL and decreased atrial contractile force. Stimulation of the AV conduction-related parasympathetic nerves to the AV node prolonged AV interval. Trimethaphan, a ganglionic nicotinic receptor blocker, injected into the SVC-Ao fat pad attenuated the negative inotropic, chronotropic, and dromotropic responses to CVS by 33 approximately 37%. On the other hand, lidocaine, a sodium channel blocker, injected into the SVC-Ao fat pad almost totally inhibited the inotropic and chronotropic responses to CVS and partly inhibited the dromotropic one. Lidocaine or trimethaphan injected into the SAPS locus abolished the inotropic responses to SAPS, but it partly attenuated those to CVS, although these treatments abolished the chronotropic responses to SAPS or CVS. These results suggest that parasympathetic ganglionic cells in the SVC-Ao fat pad, differing from those in SA and AV fat pads, nonselectively control the atrial contractile force, SCL, and AV conduction partially in the dog heart.  相似文献   

4.
Chronotropic and dromotropic responses to treadmill exercise were compared in conscious dogs prior to and following excision of the sinoatrial node (SAN). The initial junctional rhythm accompanying removal of the SAN region was replaced within hours to days by subsidiary atrial pacemaker (SAP) foci located in the inferior right atrium along the sulcus terminalis. With SAN intact, cardiac acceleration was immediate at onset of exercise and the tachycardia was directly proportional to work intensity. Atrioventricular (AV) conduction concurrently accelerated during exercise as manifest by shortening in P-R and atrioventricular (A-V) intervals. Following SAN excision, subsidiary atrial pacemaker foci likewise demonstrated prompt tachycardias during exercise, although heart rate was significantly reduced at rest and during steady state exercise. In the SAP state, tachycardia during exercise was related to work intensity and was mediated by changes in cardiac autonomic nerve activity. Combined propranolol-atropine blockade increased heart rate at rest in the SAP state, and significantly attenuated the tachycardia accompanying treadmill exercise. Following SAN excision the P-R (A-V) interval was significantly reduced in the resting animal. In response to exercise, AV conduction time decreased in the SAP state, though the absolute levels during steady state exercise were not significantly different from prior control runs with SAN intact. Blood pressure response to exercise was similar during both SAN and SAP states. We conclude that following an initial unstable period, SAP foci maintain adequate heart rate increases in response to dynamic exercise, primarily mediated via autonomic nerve regulation.  相似文献   

5.
A perfusion with normal Tirode solution containing isoproterenol, acetylcholine and their combination into the sinus node artery of the anesthetized open-chest dogs was used to induce atrial fibrillation. The perfusion of isoproterenol, alone, was unable to induce atrial fibrillation, though significantly increased atrial rate. Meanwhile the perfusion of acetylcholine, alone, did induce atrial fibrillation in all animals. The mixed perfusion of isoproterenol and acetylcholine led to decreasing the threshold (minimum) concentration of acetylcholine to induce atrial fibrillation. Herewith, atrial fibrillation appeared at later time from a perfusion start and lasted for more long time. No significant slowing down of sinus rhythm was registered before the initiation of atrial fibrillation. The data suggest that initiation of paroxysmal atrial fibrillation may only be mediated by parasympathetic activity and dependents on a level of adrenergic activity.  相似文献   

6.
In subjects with sinus rhythm, respiration has a profound effect on heart rate variability (HRV) at high frequencies (HF). Because this HF respiratory arrhythmia is lost in atrial fibrillation (AF), it has been assumed that respiration does not influence the ventricular response. However, previous investigations have not considered the possibility that respiration might influence HRV at lower frequencies. We hypothesized that Cheyne-Stokes respiration with central sleep apnea (CSR-CSA) would entrain HRV at very low frequency (VLF) in AF by modulating atrioventricular (AV) nodal refractory period and concealed conduction. Power spectral analysis of R-wave-to-R-wave (R-R) intervals and respiration during sleep were performed in 13 subjects with AF and CSR-CSA. As anticipated, no modulation of HRV was detected at HF during regular breathing. In contrast, VLF HRV was entrained by CSR-CSA [coherence between respiration and HRV of 0.69 (SD 0.22) at VLF during CSR-CSA vs. 0.20 (SD 0.19) at HF during regular breathing, P < 0.001]. Comparison of R-R intervals during CSR-CSA demonstrated a shorter AV node refractory period during hyperpnea than apnea [minimum R-R of 684 (SD 126) vs. 735 ms (SD 147), P < 0.001] and a lesser degree of concealed conduction [scatter of 178 (SD 56) vs. 246 ms (SD 72), P = 0.001]. We conclude that CSR-CSA entrains the ventricular response to AF, even in the absence of HF respiratory arrhythmia, by inducing rhythmic oscillations in AV node refractoriness and the degree of concealed conduction that may be a function of autonomic modulation of the AV node.  相似文献   

7.
Autonomic regulation of subsidiary atrial pacemakers during exercise   总被引:2,自引:0,他引:2  
Cardiac responses to graded treadmill exercise were compared in conscious dogs before and after excision of the sinoatrial node (SAN) and adjacent tissue along the sulcus terminalis. The chronotropic and dromotropic responses to dynamic exercise were compared with and without selective muscarinic (atropine) and/or beta-adrenergic (timolol) blockade. With the SAN intact, cardiac acceleration was prompt during onset of exercise and in proportion to work intensity. Immediately after SAN excision (1-7 days), pacemaker activity exhibited marked instability in rate and pacemaker location, with rapid shifts between atrial and junctional foci. Soon thereafter (1-2 wk), subsidiary atrial pacemakers (SAPs) assumed the primary pacemaker function. Although the SAP foci demonstrated stable heart rates and atrioventricular (AV) intervals at rest and during exercise, heart rates at rest and during steady-state exercise were reduced 34% from corresponding levels in the SAN-intact state, both with and without selective autonomic blockade. For control of dromotropic function, animals with SAP foci showed pronounced shortening in AV interval in conjunction with exercise that was further exacerbated by pretreatment with atropine. Eight weeks after excision of the primary SAN pacemakers, direct electrophysiological mapping localized the SAP foci to either the inferior right atrium along the sulcus terminalis or the dorsal cranial right atrium (in or near Bachmann's bundle). Animals with SAPs localized to the inferior right atrium had a more marked suppression in heart rate with a corresponding greater decrease in AV interval during exercise than dogs with SAP foci identified within the dorsal cranial right atrium.  相似文献   

8.
This work develops a mathematical model for the atrioventricular (AV) node in the human heart, based on recordings of electrical activity in the atria (the upper chambers of the heart) and the ventricles (the lower chambers of the heart). Intracardiac recordings of the atrial and ventricular activities were recorded from one patient with atrial flutter and one with atrial fibrillation. During these arrhythmias, not all beats in the atria are conducted to the ventricles. Some are blocked (concealed). However, the blocked beats can affect the properties of the AV node. The activation times of the atrial events were regarded as inputs to a mathematical model of conduction in the AV node, including a representation of AV nodal concealment. The model output was compared to the recorded ventricular response to search for and identify the best possible parameter combinations of the model. Good agreement between the distribution of interbeat intervals in the model and data for durations of 5 min was achieved. A model of AV nodal behavior during atrial flutter and atrial fibrillation could potentially help to understand the relative roles of atrial input activity and intrinsic AV nodal properties in determining the ventricular response.  相似文献   

9.
Mezentseva LV 《Biofizika》2012,57(3):502-508
The present study presents the results of mathematical and computer modeling of atrial fibrillation and ventricular disturbances following atrial fibrillation. The model is based on the assumption, that electric impulsation arriving on the atrioventricular node during atrial fibrillation is sum N of independent pulse streams with various amplitude-frequency and phase characteristics. With this model it becomes possible to investigate the dependence of nonlinear dynamics of PP and RR intervals on amplitude-frequency and phase characteristics pulse streams. Results of computer experiments are compared with real physiological experiments on rabbits. Identification of model was carried out by means of least-squares procedure.  相似文献   

10.
The present study presents the results of mathematical and computer modeling of atrial fibrillation and ventricular disturbances following atrial fibrillation. The model is based on the assumption that electric impulsation arriving on the atrioventricular node during atrial fibrillation is sum of N independent pulse streams with various amplitude-frequency and phase characteristics. With this model it becomes possible to investigate the dependence of nonlinear dynamics of PP and RR intervals on amplitude-frequency and phase characteristics pulse streams. Results of computer experiments are compared with real physiological experiments on rabbits. Identification of model was carried out by means of least-squares procedure.  相似文献   

11.
OBJECTIVE--To compare the interobserver and intraobserver variability of blood pressure measurements in geriatric patients in atrial fibrillation and in sinus rhythm. DESIGN--Prospective assessment of blood pressure measurements carried out in random order in two groups of elderly patients by five doctors unaware of the aims of the study. SETTING--Acute assessment wards for geriatric medicine, Cardiff Royal Infirmary. PATIENTS--50 Elderly patients in sinus rhythm and 50 in atrial fibrillation. MAIN OUTCOME MEASURES--Interobserver and intraobserver variability of blood pressure measurements in the two groups expressed as the coefficient of variability and compared by the Mann-Whitney U test. RESULTS--Interobserver variability was significantly greater in the patients with atrial fibrillation for both systolic and diastolic pressures. Intraobserver variability was significantly greater in the atrial fibrillation group for diastolic pressures but the difference was not significant for systolic pressures. These differences were not related to pulse rate, age, or level of blood pressure. CONCLUSIONS--The findings suggest that in the presence of atrial fibrillation physicians'' interpretations of Korotkoff sounds are less uniform, which may have important clinical implications. Possibly a standardised methodology may overcome this problem.  相似文献   

12.
To investigate whether altered function of adenosine receptors could contribute to sinus node or atrioventricular (AV) nodal dysfunction in conscious mammals, we studied transgenic (TG) mice with cardiac-specific overexpression of the A1 adenosine receptor (A1AR). A Holter ECG was recorded in seven freely moving littermate pairs of mice during normal activity, exercise (5 min of swimming), and 1 h after exercise. TG mice had lower maximal heart rates (HR) than wild-type (WT) mice (normal activity: 437 +/- 18 vs. 522 +/- 24 beats/min, P < 0.05; exercise: 650 +/- 13 vs. 765 +/- 28 beats/min, P < 0.05; 1 h after exercise: 588 +/- 18 vs. 720 +/- 12 beats/min, P < 0.05; all values are means +/- SE). Mean HR was lower during exercise (589 +/- 16 vs. 698 +/- 34 beats/min, P < 0.05) and after exercise (495 +/- 16 vs. 592 +/- 27 beats/min, P < 0.05). Minimal HR was not different between genotypes. HR variability (SD of RR intervals) was reduced by 30% (P < 0.05) in TG compared with WT mice. Pertussis toxin (n = 4 pairs, 150 microg/kg ip) reversed bradycardia after 48 h. TG mice showed first-degree AV nodal block (PQ interval: 42 +/- 2 vs. 37 +/- 2 ms, P < 0.05), which was diminished but not abolished by pertussis toxin. Isolated Langendorff-perfused TG hearts developed spontaneous atrial arrhythmias (3 of 6 TG mice vs. 0 of 9 WT mice, P < 0.05). In conclusion, A1AR regulate sinus nodal and AV nodal function in the mammalian heart in vivo. Enhanced expression of A1AR causes sinus nodal and AV nodal dysfunction and supraventricular arrhythmias.  相似文献   

13.
The cells of the atrioventricular (AV) junction in the ferret heart were examined using light microscopy, a wax-model reconstruction and quantitative electron microscopy to determine their organization and characteristics. A series of subdivisions of the specialized tissues of the AV junction was apparent at both the light and electron microscopic levels. A transitional zone was observed interposed between the atrial muscle cells and the AV node. The AV node consisted of a coronary sinus portion, a superficial portion and a deep portion. The AV bundle had a segment above the anulus fibrosus, a segment which penetrated the right fibrous trigone, a non-branching segment below the anulus fibrosus and a branched segment. At the ultrastructural level the AV junctional conduction tissues had fewer irregularly oriented myofibrils than did working atrial myocardial cells. T-tubules, present in atrial muscle cells, were not observed in the modified muscle cells of the AV node and bundle. Conventional intercalated discs also were not observed between the cells of the AV node or the AV bundle. Atrial myocardial cells had the highest percentage of the plasma membrane occupied by desmosomes, fasciae adherentes and gap junctions. The AV bundle cells had the highest percentage of appositional surface membrane and a relatively large fraction of plasma membrane occupied by gap junctions. Cells of the superficial portion of the AV node had the smallest percentage of the plasma membrane composed of gap junctions, desmosomes or fasciae adherentes, as well as the smallest fraction of the cell membrane apposed to adjacent cells. The stereological data indicate that the most useful distinguishing characteristic between atrial muscle cells and conduction cells was that a smaller percentage of the conduction cell sarcoplasm was occupied by mitochondria and myofibrils. The most useful characteristics that could be used to differentiate between the regions of the AV junctional conduction tissues were the amounts and types of surface membrane specializations in the respective cell types.  相似文献   

14.
Seventy five consecutive patients with Graves'' disease complicated by atrial fibrillation were given a large single therapeutic dose of 600 MBq (16.2 mCi) iodine-131 in an effort to control their hyperthyroidism rapidly and thus restore sinus rhythm. Patients were initially followed up every three months after treatment and then at yearly intervals. The mean period of follow up was 3.1 years. A total of 44 of the patients became hypothyroid and 31 euthyroid, and 33 (75%) and 14 (45%) of these patients, respectively, reverted to sinus rhythm (p less than 0.01). Of the 33 who became hypothyroid and reverted to sinus rhythm, 30 had developed the hypothyroidism within six months after treatment. These results are a strong case for increasing the dose of radioiodine in patients with Graves'' disease complicated by atrial fibrillation in an effort to speed the onset of thyroid failure and thus maximise the rate of reversion to sinus rhythm.  相似文献   

15.
AimsOptimization of the AV-interval (AVI) in DDD pacemakers improves cardiac hemodynamics and reduces pacemaker syndromes. Manual optimization is typically not performed in clinical routine. In the present study we analyze the prevalence of E/A wave fusion and A wave truncation under resting conditions in 160 patients with complete AV block (AVB) under the pre-programmed AVI. We manually optimized sub-optimal AVI.MethodsWe analyzed 160 pacemaker patients with complete AVB, both in sinus rhythm (AV-sense; n = 129) and under atrial pacing (AV-pace; n = 31). Using Doppler analyses of the transmitral inflow we classified the nominal AVI as: a) normal, b) too long (E/A wave fusion) or c) too short (A wave truncation). In patients with a sub-optimal AVI, we performed manual optimization according to the recommendations of the American Society of Echocardiography.ResultsAll AVB patients with atrial pacing exhibited a normal transmitral inflow under the nominal AV-pace intervals (100%). In contrast, 25 AVB patients in sinus rhythm showed E/A wave fusion under the pre-programmed AV-sense intervals (19.4%; 95% confidence interval (CI): 12.6–26.2%). A wave truncations were not observed in any patient. All patients with a complete E/A wave fusion achieved a normal transmitral inflow after AV-sense interval reduction (mean optimized AVI: 79.4 ± 13.6 ms).ConclusionsGiven the rate of 19.4% (CI 12.6–26.2%) of patients with a too long nominal AV-sense interval, automatic algorithms may prove useful in improving cardiac hemodynamics, especially in the subgroup of atrially triggered pacemaker patients with AV node diseases.  相似文献   

16.
Lone atrial fibrillation may be associated with daily life disability and exercise limitation. The extracardiac pathophysiology of these effects is poorly explored. In 35 subjects with lone atrial fibrillation (mean age 67 +/- 7 yr), we investigated pulmonary function, symptom-limited cardiopulmonary exercise performance, muscle ergoreflex (handgrip exercise) contribution to ventilation, and brachial artery flow-mediated dilation (as a measure of endothelial function) before and after (average interval 20 +/- 5 days) restoring sinus rhythm with external cardioversion. Respiratory volumes and lung diffusing capacity at rest were within normal limits during both atrial fibrillation and after restoring sinus rhythm. Cardioversion was associated with the following changes: a decrease of the slope of exercise ventilation vs. CO2 production (from 35 +/- 5 to 29 +/- 3; P <0.01) and of dyspnea sensation (Borg score from 4 to 2) and an increase of peak oxygen uptake (Vo2; from 16 +/- 4 to 20 +/- 5 ml.min(-1).kg(-1); P <0.01), Vo2 at anaerobic threshold (from 11 +/- 2 to 13 +/- 2 ml.min(-1).kg(-1); P <0.05), and O2 pulse (from 8 +/- 3 to 11 +/- 3 ml/beat; P <0.01). After cardioversion, the observed improvement in ventilatory efficiency was accompanied by a significant peak end-tidal CO2 increase (from 33 +/- 2 to 37 +/- 2 mmHg; P <0.01) and no changes in dead space-to-tidal volume ratio (from 0.23 +/- 0.03 to 0.23 +/- 0.02; P=not significant). In addition, the ergoreflex contribution to ventilation was remarkably attenuated, and the brachial artery flow-mediated dilatation was significantly augmented (from 0.32 +/- 0.07 to 0.42 +/- 0.08 mm; P <0.01). Ten patients had atrial fibrillation relapse and, compared with values after restoration of regular sinus rhythm, invariably showed worsening of endothelial function, exercise ventilatory efficiency, and muscle ergoreflex contribution to ventilation. In subjects with lone atrial fibrillation, an impairment in ventilatory efficiency appears to be involved in the pathophysiology of exercise limitation, and to be primarily related with a demodulated peripheral control of ventilation.  相似文献   

17.
Verapamil was administered by intravenous injection to 181 patients with various cardiac arrhythmias. The automaticity of the cardiac pacemaker was slowed in sinus, idionodal, and idioventricular tachycardia. In atrial fibrillation the drug usually slowed the ventricular response and often made it regular. In some cases atrial flutter was converted to sinus rhythm, the ventricular response being reduced in the remainder. Conversion of paroxysmal supraventricular tachycardia to sinus rhythm was consistently achieved. A favourable response occurred in four patients in whom arrhythmias were associated with pre-excitation syndromes. There were no adverse clinical side effects.  相似文献   

18.
OBJECTIVE--To determine in patients with first ever stroke whether atrial fibrillation influences clinical features, the need to perform computed tomography, and prognosis. DESIGN--Observational cohort study with maximum follow up of 6.5 years. SETTING--Primary care, based on 10 general practices in urban and rural Oxfordshire. SUBJECTS--Consecutive series of 675 patients with first ever stroke registered in the Oxfordshire community stroke project. MAIN OUTCOME MEASURES--Prevalence of atrial fibrillation by type of stroke; effect of atrial fibrillation on case fatality rate and risk of recurrent stroke, vascular death, and death from all causes. RESULTS--Prevalence of atrial fibrillation was 17% (95% confidence interval 14% to 20%) for all stroke types (115/675), 18% (15% to 21%) for cerebral infarction (97/545), 11% (4% to 11%) for primary intercerebral haemorrhage (7/66), and 0% (0 to 11%) for subarachnoid haemorrhage (0/33). For patients with cerebral infarction the 30 day case fatality rate was significantly higher with atrial fibrillation (23%) than with sinus rhythm (8%); the risk of early recurrent stroke (within 30 days) was 1% with atrial fibrillation and 4% with sinus rhythm. In patients who survived at least 30 days the average annual risk of recurrent stroke was 8.2% (5.9% to 10.9%) with sinus rhythm and 11% (6.0% to 17.3%) with atrial fibrillation. CONCLUSIONS--After a first stroke atrial fibrillation was not associated with a definite excess risk of recurrent stroke, either within 30 days or within the first few years. Survivors with and without atrial fibrillation had a clinically important absolute risk of further serious vascular events.  相似文献   

19.
Dual atrioventricular (AV) nodal pathway physiology is described as two different wave fronts that propagate from the atria to the His bundle: one with a longer effective refractory period [fast pathway (FP)] and a second with a shorter effective refractory period [slow pathway (SP)]. By using His electrogram alternance, we have developed a mathematical model of AV conduction that incorporates dual AV nodal pathway physiology. Experiments were performed on five rabbit atrial-AV nodal preparations to develop and test the presented model. His electrogram alternances from the inferior margin of the His bundle were used to identify fast and slow wave front propagations. The ability to predict AV conduction time and the interaction between FP and SP wave fronts have been analyzed during regular and irregular atrial rhythms (e.g., atrial fibrillation). In addition, the role of dual AV nodal pathway wave fronts in the generation of Wenckebach periodicities has been illustrated. Finally, AV node ablative modifications have been evaluated. The model accurately reproduced interactions between FP and SP during regular and irregular atrial pacing protocols. In all experiments, specificity and sensitivity higher than 85% were obtained in the prediction of the pathway responsible for conduction. It has been shown that, during atrial fibrillation, the SP ablation significantly increased the mean HH interval (204 ± 39 vs. 274 ± 50 ms, P < 0.05), whereas FP ablation did not produce significant slowing of ventricular rate. The presented mathematical model can help in understanding some of the intriguing AV node mechanisms and should be considered as a step forward in the studies of AV nodal conduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号