首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA synthesis is activated in the cells of the plant embryo very soon after the start of seed imbibition. We previously reported that mainly heterogeneous nuclear RNA is synthesized in the radicle of Zea mays embryo during the first hours of germination. The present study was undertaken in order to detect the time of appearance of the newly synthesized messenger RNA in the polysomes of germinating maize axes.

Free polysomes were prepared from embryonic axes rehydrated for 2 hours in the presence of radioactively labeled uridine. These polysomes were shown to be labeled and to contain labeled particles sedimenting, after dissociation with EDTA, in the 10S to 40S region of a sucrose gradient. The labeled polysomal RNA migrates heterogeneously in a gel with a mean size corresponding to about 16S, and 60% of these molecules are polyadenylated.

The data indicate that the newly synthesized RNA associated with the polysomes after 2 h of germination consists of messenger RNA molecules. Analysis of the polysomes prepared 0.5 and 1 h after the start of imbibition suggests that translation of the newly synthesized messenger RNA probably occurs within the 1st hour of imbibition of the isolated axis, thus well before the completion of the initial water uptake.

  相似文献   

2.
3.
Mycelia of Neurospora crassa in a steady state of growth in different media have a ribosomal content proportional to the rate of growth. Moreover, both the percentage of polysomes and the average ribosomal activity are about the same at all different growth rates. The content of polyadenylated RNA was determined in three different conditions of exponential growth, which allowed growth rates that ranged from 0.26 to 0.51 duplications/h, and was found to constitute about the same fraction of total RNA (4.5--5.2%). Using a kinetic approach, an equation was derived which allowed determination of the average half-lives of polyadenylated RNA: in each medium the cultures were labeled from the moment of the inoculation with [32P]orthophosphate and were then given a 10-min pulse with [5-3H]uridine when they were in the exponential phase. It was found that the determined half-lives of polyadenylated RNA vary, depending on the growth medium, between 30 and 60 min, but with no direct correlation with the growth rate. Moreover, the rate of synthesis of polyadenylated RNA relative to that of stable RNA decreased with the growth rate. On the basis of previous data on the rates of synthesis of stable RNA, it was possible to make an evaluation of the absolute rate of synthesis of polyadenylated RNA. Whereas the rate of synthesis of stable ribosomal RNA increases as a function of the square of the number of duplications per hour, the increase in the rate of synthesis of polyadenylated RNA with the growth rate is much less consistent. It is concluded that in Neurospora the growth rate does not depend on the rate of synthesis of mRNA but rather on the rate of synthesis of rRNA, which sets both the ribosomal level and the steady-state level of mRNA.  相似文献   

4.
5.
Biosynthesis and stability of the mRNA population in DMSO-induced Friend erythroleukemic cells were studied after labeling the RNA with 3H-uridine and then chasing it with nonlabeled uridine. Globin RNA metabolism was studied by hybridization to excess complementary DNA covalently coupled to oligo(dT)-cellulose. After a labeling period of 120 min, 2–4% of the poly(A)-containing labeled RNA was in globin RNA; it decayed with a half-life of 16–17 hr. The rest of the poly(A)-containing RNA was composed of two kinetic populations: 85–90% decayed with a half-life of about 3 hr, while 10% decayed with a half-life of about 37 hr. The portion of globin RNA in labeled poly(A)-containing RNA behaved in an unexpected fashion during the chase period. During the initial chase period, the percentage of globin RNA increased rapidly, reaching a maximum of about 15% at 20 hr, but if subsequently declined gradually.Based on these findings, a model was built that describes the changes in the proportion of globin mRNA in poly(A)-containing RNA during continuous synthesis and after chase of the labeled RNA. It appears that if the parameters described remain constant during the maturation of erythroblasts, then this model would not account for the almost exclusive presence of globin RNA in the reticulocyte. By far the most effective way to achieve this high level of globin RNA is the destabilization of the mRNA population which is more stable than globin RNA, and not the stabilization of globin RNA itself.  相似文献   

6.
We have investigated the synthesis and coding capacity of RNA isolated from cultures of differentiating Drosophila embryonic muscle cells. We find that following muscle cell fusion, the sedimentation profile of newly synthesized polyadenylated RNA becomes somewhat lighter. In vitro translation products analyzed by two-dimensional gel electrophoresis indicate that the coding capacity of translatable myogenic mRNA changes during differentiation. A group of several muscle-specific proteins (including the contractile proteins) is translated only from mRNA isolated after the initiation of fusion. This pattern coincides with proteins synthesized in vivo during differentiation. Additionally, we find that polyadenylated and nonpolyadenylated myogenic mRNA from a given developmental stage in culture have extremely similar coding potentials.  相似文献   

7.
《Plant science》1987,49(1):31-36
Exposure of dark-grown resting Euglena gracilis Klebs strain Z Pringsheim to light results in a transient increase in the specific activity of NADPH-glutamate dehydrogenase. NADPH-glutamate dehydrogenase antibody was used to detect NADPH glutamate dehydrogenase resulting from the translation of total polyadenylated RNA and polysomal RNA from Euglena in a cell-free rabbit reticulocyte lysate system. NADPH-glutamate dehydrogenase mRNA was present in cells at all stages of development and present on polysomes from dark-grown and regreening cells but not on polysomes from dark-grown resting cells. These results indicate that the light-induced increase in NADPH-glutamate dehydrogenase in dark-grown resting cells represent an increase in the rate enzyme synthesis resulting from the mobilisation of NADPH-glutamate dehydrogenase mRNA onto polysomes.  相似文献   

8.
As a prerequisite to examining mRNA metabolism in compensatory renal hypertrophy, polyadenylated RNA has been purified from normal mouse kidney polysomal RNA by selection on oligo(dT)-cellulose. Poly(A)-containing RNA dissociated from polysomes by treatment with 10 mM EDTA and sedimented heterogeneously in dodecyl sulfate-containing sucrose density gradients with a mean sedimentation coefficient of 20 S. Poly(A) derived from this RNA migrated at the rate of 6-7 S RNA in dodecyl sulfate-containing 10% polyacrylamide gels. Coelectrophoresis of poly(A) labeled for 90 min with poly(A) labeled for 24 h indicated the long-term labeled poly(A) migrated faster than pulse-labeled material. Twenty percent of the cytoplasmic poly(A)-containing mRNA was not associated with the polysomes, but sedimented in the 40-80 S region (post-polysomal). Messenger RNA from the post-polysomal region had sedimentation properties similar to those of mRNA prepared from polysomes indicating post-polysomal mRNA was not degraded polysomal mRNA. Preliminary labeling experiments indicated a rapid equilibration of radioactivity between the polysomal and post-polysomal mRNA populations, suggesting the post-polysomal mRNA may consist of mRNA in transit to the polysomes.  相似文献   

9.
Novikoff rat hepatoma cells (subline NlSl-67) in suspension culture incorporate 3H-5-uridine into the acid-soluble nucleotide pool more rapidly than into RNA, resulting in the accumulation of labeled UTP in the cells. When labeled uridine is removed from the medium after 20 minutes or 4.75 hours of labeling, the rate of incorporation of label from the nucleotide pool into RNA decreases to less than 10% of the original rate within five to ten minutes, in spite of the presence of a large pool of labeled UTP in the cells, and incorporation ceases completely if an excess of unlabeled uridine is present during the chase. Upon addition of 14C-uridine to 3H-uridine pulse-labeled, chased cells, the 14C begins to be incorporated into RNA without delay and at a rate predetermined by the concentration of 14C-uridine in the medium and without affecting the fate of the free 3H-nucleotides labeled during the pulse-period. The results are interpreted to indicate that uridine is incorporated into at least two different pools, only one of which serves as primary source of nucleotides for RNA synthesis. During active synthesis of RNA, the latter pool of free nucleotides is very small and rapidly exhausted when uridine is removed from the medium. However, UTP accumulates in this pool when cells are labeled at 4–6°, since at this temperature RNA synthesis is blocked while uridine is still phosphorylated by the cells, and the UTP is rapidly incorporated into RNA during a subsequent ten-minute chase at 37°. From these types of experiments it is estimated that only 20–25% of the total uridine nucleotides formed in the cells from uridine in the medium is directly available for RNA synthesis and that the remainder becomes available only at a slow rate. Evidence is presented which suggests that one uridine nucleotide pool is located in the cytoplasm and another in the nucleus and that mainly the nuclear pool supplies nucleotides for RNA synthesis. The size of the latter pool is under strict regulatory control, since preincubation of the cells with 0.5 mM unlabeled uridine has little or no effect on the subsequent incorporation of 3H-uridine, although it results in an increase of the overall cellular uridine nucleotide content to at least 5 mM. Other results indicate that adenosine is also incorporated into two independent nucleotide pools, whereas the cells normally appear to possess a single thymidine nucleotide pool.  相似文献   

10.
11.
Rates of synthesis of major classes of RNA in Drosophila embryos.   总被引:6,自引:0,他引:6  
We have been successful in labeling to high specific activity (3 × 105 dpm/μg) the RNA synthesized by large numbers of Drosophila embryos. Embryos of various developmental stages were rendered permeable with octane and labeled with [3H]uridine for 1 hr. At each stage the total dpm incorporated into RNA and the specific activity of the UTP pool were measured and used to calculate the absolute rate of RNA synthesis per embryo. This rate increases during embryonic development, from 1 pmole UTP/hr at 2 hr after oviposition to 6 pmoles UTP/hr at 15 hr. The rates of synthesis of nuclear and cytoplasmic poly(A)? and poly(A)+ RNAs were determined by analyzing the fractionated RNAs from each stage by sucrose gradient sedimentation. There is a significant activation of nuclear RNA synthesis at the blastoderm stage (approximately 2 hr after oviposition). After blastoderm, the rates of synthesis of nuclear and cytoplasmic poly(A)? and poly(A)+ RNA per embryo increase continuously; the rate of synthesis of each of these classes per nucleus, however, remains fairly constant. After making corrections for turnover during the labeling period, we find that the rates of synthesis of the major classes of RNA per nucleus at the gastrula stage are: cytoplasmic poly(A)+ RNA, 0.06 fg/nucleus-min; hnRNA, 0.86 fg/nucleus-min; and ribosomal RNA, 0.46 fg/nucleus-min. These rates are compared to rates of RNA synthesis in sea urchin embryos.  相似文献   

12.
An attempt is made to characterize the rapidly labeled hybridizable RNA of L5178Y mouse leukemic cells which has been shown to have similar base sequences when synthesized in two different stages of the cell cycle. The size of rapidly labeled RNA molecules was heterogeneous. For labeling times of 20 min or less, the per cent of hybridization was maximal. With longer labeling times, the per cent of hybridization decreased as radioactivity appeared in long-lived species of low hybridization efficiency; the radioactivity profile resembled the optical density profile in sucrose gradients. The lifetime of newly synthesized hybridizable RNA was studied by pulse labeling exponentially growing cells and then “chasing” with nonradioactive uridine. The per cent of hybridization was studied as a function of chase time. Three RNA groups, which comprised different proportions of rapidly labeled hybridizable RNA, were distinguished. The short-lived group had a half-life of 10 min, much less than the values reported in the literature for messenger RNA of mammalian cells. The half-life of 1-1½ hr observed for a medium-lived group more closely corresponds to that of messenger RNA. A long-lived group had a half-life of approximately 20 hr. Specific activity measurements during chase indicate the presence of a “pool” of labeled uridine derivatives. The uridine of this pool appears to be nonexchangeable with but dilutable by exogenous uridine. A nontoxic concentration of actinomycin D was added to the chase media in an attempt to block the “pool effect”. A rapidly degradable RNA was demonstrable both by specific activity and per cent of hybridization measurements.  相似文献   

13.
Investigations were conducted to quantitate polyadenylic acid and estimate the synthesis of polyadenylated RNA in mouse embryos at several stages of preimplantation development. Poly(A) was assayed by molecular hybridization of total embryonic RNA with [3H]polyuridylic acid. The mean values of poly(A) in the ovulated oocytes and in the one-cell, two-cell, and blastocyst stages of the embryo were 1.9, 1.6, 0.68, and 3.8 pg, respectively. Synthesis of polyadenylated RNA was estimated by affinity chromatography of [3H]uridine-labeled embryo RNA on oligo(dT)-cellulose. The proportions of newly synthesized RNA bound by oligo(dT)-cellulose at the 2-cell, 8- to 16-cell, and blastocyst stages were 6.7, 3.5, and 3.3%, respectively. These results suggest that significant quantities of maternal mRNA are present during early development of the mouse, but that polyadenylation of RNA transcribed from the embryonic genome occurs as early as the two-cell stage.  相似文献   

14.
15.
Changing rates of DNA and RNA synthesis in Drosophila embryos   总被引:6,自引:0,他引:6  
Rates of DNA and RNA synthesis during Drosophila embryogenesis were measured by labeling octane-treated embryos with [14C]thymidine and [3H]uridine. Radioactivity incorporated per hour was converted to rates of synthesis using measurements of the pool-specific activity during the labeling periods. The rate of DNA synthesis during early embryogenesis increases to a maximum at 6 hr after oviposition and then decreases sharply. Measured rates of DNA synthesis were used to calculate that the total amount of DNA per embryo doubles every 18 min at blastoderm, every 70–80 min during gastrulation, and less than once every 7 hr at later stages. The rate of RNA accumulation per embryo increases continuously during the first 14 hr of embryogenesis. The rate of nuclear RNA synthesis per diploid amount of DNA, however, decreases fivefold between blastoderm and primary organogenesis. The cytoplasmic poly(A)+ RNA synthesized by blastoderm embryos associates rapidly with polysomes. The relatively high rate of synthesis of polysomal poly(A)+ RNA per nucleus at blastoderm allows the small number of nuclei present at blastoderm to make a significant quantitative contribution to the informational RNA active in the early embryo. At the end of blastoderm, approximately 14% of the mRNA being translated in the embryo has been synthesized after fertilization.  相似文献   

16.
When resting (G0) mouse 3T6 fibroblasts are serum stimulated to reenter the cell cycle, the rates of synthesis of rRNA and ribosomal proteins increase, resulting in an increase in ribosome content beginning about 6 h after stimulation. In this study, we monitored the content, metabolism, and translation of ribosomal protein mRNA (rp mRNA) in resting, exponentially growing, and serum-stimulated 3T6 cells. Cloned cDNAs for seven rp mRNAs were used in DNA-excess filter hybridization studies to assay rp mRNA. We found that about 85% of rp mRNA is polyadenylated under all growth conditions. The rate of labeling of rp mRNA relative to total polyadenylated mRNA changed very little after stimulation. The half-life of rp mRNA was about 11 h in resting cells and about 8 h in exponentially growing cells, values which are similar to the half-lives of total mRNA in resting and growing cells (about 9 h). The content of rp mRNA relative to total mRNA was about the same in resting and growing 3T6 cells. Furthermore, the total amount of rp mRNA did not begin to increase until about 6 h after stimulation. Since an increase in rp mRNA content did not appear to be responsible for the increase in ribosomal protein synthesis, we determined the efficiency of translation of rp mRNA under different conditions. We found that about 85% of pulse-labeled rp mRNA was associated with polysomes in exponentially growing cells. In resting cells, however, only about half was associated with polysomes, and about 30% was found in the monosomal fraction. The distribution shifted to that found in growing cells within 3 h after serum stimulation. Similar results were obtained when cells were labeled for 10.5 h. About 70% of total polyadenylated mRNA was in the polysome fraction in all growth states regardless of labeling time, indicating that the shift in mRNA distribution was species specific. These results indicate that the content and metabolism of rp mRNA do not change significantly after growth stimulation. The rate of ribosomal protein synthesis appears to be controlled during the resting-growing transition by an alteration of the efficiency of translation of rp mRNA, possibly at the level of protein synthesis initiation.  相似文献   

17.
Permeabilized eggs of Drosophila melanogaster were incubated in tritiated uridine, valine, and phenylalanine. The uptake and incorporation into TCA-insoluble material were measured by scintillation counting. There was very little incorporation of uridine before the blastoderm stage. At the blastoderm stage, the egg took up 2.4 pmoles/hr of uridine and incorporated 0.13 pmoles into RNA (assuming no dilution of specific activity of the precursor). The uptake of amino acids varied with the age of the embryo; virgin eggs synthesized about as much protein as fertilized eggs. Autoradiography of eggs incubated in uridine showed a lack of RNA synthesis in nuclei until the start of the blastoderm formation. The small amount of uridine incorporation before this stage was due to mitochondria. Incorporation of amino acids was uniform in the cytoplasm until the blastoderm; there was no incorporation by yolk granules. Regional difference in labeling appeared during gastrulation. The pole cells did not form RNA during the blastoderm stage, formation started during gastrulation. Protein labeling of the pole cells, on the contrary, was very strong in the blastoderm and early gastrula. These results indicate that the expression of zygotic genome before the blastoderm stage is unlikely.  相似文献   

18.
19.
Erythrocyte membrane sulfhydryl groups and the active transport of cations   总被引:3,自引:0,他引:3  
RNA synthesis was studied by autoradiographic analysis using tritiated uridine incorporation in the Chinese hamster cell line Dede after a one-minute pulse labeling period. RNA synthesis continues during all stages of interphase and mitosis except during metaphase and anaphase. Cytoplasmic RNA was apparently synthesized in the nucleus, since no grains were observed above the background level in the sample immediately following the labeling. Nucleoli synthesize their own RNA and are not reservoirs for RNA synthesized elsewhere. Both actinomycin D and nogalamycin inhibited the RNA synthetic activity of chromatin and nucleoli. However, the nucleolar synthetic activity was more susceptible to these agents than that of chromatin. Furthermore, actinomycin D was a stronger inhibitor than nogalamycin.  相似文献   

20.
Polyadenylated RNA was isolated from fission yeast (Schizosaccharomyces pombe) total RNA using oligo(dT)-cellulose, and was studied as a model for messenger RNA. The half-life of poly adenylated RNA was measured by two independent methods. (a) The rate of labelling of polyadenylated RNA during incubation of cells with [5-3H]uridine was measured. A half-life of 40-45 min was found by comparing the experimental data with theoretical curves calculated for labelling of RNAs with various half-lives. The influence of precursor-pool specific activity on RNA labelling kinetics is considered. (b) Cells were labelled with [5-3H]uridine then further RNA synthesis was inhibited by addition of 8-hydroxyquinoline. The rate of loos of radioactivity from polyadenylated RNA indicated a half-life of 50 min. The half-life found by these two methods is about one-third of the cell doubling time, and is much longer than previous estimates by indirect methods of yeast messenger RNA half-life. Both experimental methods provided evidence for the existence of tas a half-life of 40-50 min; a much smaller population is probably turning over more rapidly. After inhibition of RNA synthesis by 8-hydroxyquinoline, the rate of total protein synthesis declined much more rapidly than the polyadenylated RNA content of the cells. However, 60 min after inhibition of RNA synthesis there was a small rise in the rate of portein synthesis. These data are interpreted as evidence for mechanisms controlling protein synthesis which operate at the level of messenger RNA translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号