首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Iron regulatory protein 1 (IRP1) is a bifunctional [4Fe-4S] protein that controls iron homeostasis. Switching off its function from an aconitase to an apo-IRP1 interacting with iron-responsive element-containing mRNAs depends on the reduced availability of iron in labile iron pool (LIP). Although the modulation of IRP1 by nitric oxide has been characterized, its impact on LIP remains unknown. Here, we show that inhibition of IRP1 aconitase activity and induction of its IRE-binding activity during exposure of L5178Y mouse lymphoma cells to NO are associated with an increase in LIP levels. Removal of NO resulted in a reverse regulation of IRP1 activities accompanied by a decrease of LIP. The increased iron burden in LIP caused by NO exacerbated hydrogen peroxide-induced genotoxicity in L5178Y cells. We demonstrate that the increase in LIP levels in response to chronic but not burst exposure of L5178Y cells to NO is associated with alterations in the expression of proteins involved in iron metabolism.  相似文献   

3.
Iron regulatory proteins (IRPs) control iron metabolism by specifically interacting with iron-responsive elements (IREs) on mRNAs. Nitric oxide (NO) converts IRP-1 from a [4Fe-4S] aconitase to a trans-regulatory protein through Fe-S cluster disassembly. Here, we have focused on the fate of IRE binding IRP1 from murine macrophages when NO flux stops. We show that virtually all IRP-1 molecules from NO-producing cells dissociated from IRE and recovered aconitase activity after re-assembling a [4Fe-4S] cluster in vitro. The reverse change in IRP-1 activities also occurred in intact cells no longer exposed to NO and did not require de novo protein synthesis. Likewise, inhibition of mitochondrial aconitase via NO-induced Fe-S cluster disassembly was also reversed independently of protein translation after NO removal. Our results provide the first evidence of Fe-S cluster repair of NO-modified aconitases in mammalian cells. Moreover, we show that reverse change in IRP-1 activities and repair of mitochondrial aconitase activity depended on energized mitochondria. Finally, we demonstrate that IRP-1 activation by NO was accompanied by both a drastic decrease in ferritin levels and an increase in transferrin receptor mRNA levels. However, although ferritin expression was recovered upon IRP-1-IRE dissociation, expression of transferrin receptor mRNA continued to rise for several hours after stopping NO flux.  相似文献   

4.
5.
6.
7.
The generally accepted role of iron-regulatory protein 1 (IRP1) in orchestrating the fate of iron-regulated mRNAs depends on the interconversion of its cytosolic aconitase and RNA-binding forms through assembly/disassembly of its Fe-S cluster, without altering protein abundance. Here, we show that IRP1 protein abundance can be iron-regulated. Modulation of IRP1 abundance by iron did not require assembly of the Fe-S cluster, since a mutant with all cluster-ligating cysteines mutated to serine underwent iron-induced protein degradation. Phosphorylation of IRP1 at S138 favored the RNA-binding form and promoted iron-dependent degradation. However, phosphorylation at S138 was not required for degradation. Further, degradation of an S138 phosphomimetic mutant was not blocked by mutation of cluster-ligating cysteines. These findings were confirmed in mouse models with genetic defects in cytosolic Fe-S cluster assembly/disassembly. IRP1 RNA-binding activity was primarily regulated by IRP1 degradation in these animals. Our results reveal a mechanism for regulating IRP1 action relevant to the control of iron homeostasis during cell proliferation, inflammation, and in response to diseases altering cytosolic Fe-S cluster assembly or disassembly.  相似文献   

8.
Iron regulatory protein 2 (IRP2) is a critical switch for cellular and systemic iron homeostasis. In iron-deficient or hypoxic cells, IRP2 binds to mRNAs containing iron responsive elements (IREs) and regulates their expression. Iron promotes proteasomal degradation of IRP2 via the F-box protein FBXL5. Here, we explored the effects of oxygen and cellular redox status on IRP2 stability. We show that iron-dependent decay of tetracycline-inducible IRP2 proceeds efficiently under mild hypoxic conditions (3% oxygen) but is compromised in severe hypoxia (0.1% oxygen). A treatment of cells with exogenous H(2)O(2) protects IRP2 against iron and increases its IRE-binding activity. IRP2 is also stabilized during menadione-induced oxidative stress. These data demonstrate that the degradation of IRP2 in iron-replete cells is not only oxygen-dependent but also sensitive to redox perturbations.  相似文献   

9.
10.
Yikilmaz E  Rouault TA  Schuck P 《Biochemistry》2005,44(23):8470-8478
Iron regulatory proteins (IRPs) regulate iron metabolism in mammalian cells. We used biophysical techniques to examine the solution properties of apo-IRP1 and apo-IRP2 and the interaction with their RNA ligand, the iron regulatory element (IRE). Sedimentation velocity and equilibrium experiments have shown that apo-IRP1 exists as an equilibrium mixture of monomers and dimers in solution, with an equilibrium dissociation constant in the low micromolar range and slow kinetic exchange between the two forms. However, only monomeric IRP1 is observed in complex with IRE. In contrast, IRP2 exists as monomer in both the apo-IRP2 form and in the IRP2/IRE complex. For both IRPs, sedimentation velocity and dynamic light-scattering experiments show a decrease of the Stokes radius upon binding of IRE. This conformational change was also observed by circular dichroism. Studies with an RNA molecule complementary to IRE indicate that, although specific base interactions can increase the stability of the protein/RNA complex, they are not essential for inducing this conformational change. The dynamic change of the IRP between different oligomeric and conformational states induced by interaction with IRE may play a role in the iron regulatory functions of IRPs.  相似文献   

11.
Copper/zinc-superoxide dismutase knockout (SOD1 KO) mice have been extensively used as an experimental animal model of pathology associated with oxidative stress. The mice spontaneously develop mild chronic hemolytic anaemia (HA). We previously reported that the kidneys of these types of mice contain massive amounts of iron. In this study, to clarify the role of the kidney for iron metabolism under HA, changes in the levels of expression and functions of iron-related proteins were examined. In SOD1 KO mice kidneys, protein levels of iron transporters, the iron-responsive element (IRE)-binding activity of IRP1 and the levels of phosphorylation of IRP1 are all increased. These findings indicate that oxidative stress caused by a SOD1 deficiency probably enhances the phosphorylation of and the conversion of IRP1 to the IRE-binding form, which may accelerate the reabsorption of iron by renal tubular cells. Kidney could play an important role in iron homeostasis under conditions of HA.  相似文献   

12.
《Free radical research》2013,47(6):750-757
Abstract

Copper/zinc-superoxide dismutase knockout (SOD1 KO) mice have been extensively used as an experimental animal model of pathology associated with oxidative stress. The mice spontaneously develop mild chronic hemolytic anaemia (HA). We previously reported that the kidneys of these types of mice contain massive amounts of iron. In this study, to clarify the role of the kidney for iron metabolism under HA, changes in the levels of expression and functions of iron-related proteins were examined. In SOD1 KO mice kidneys, protein levels of iron transporters, the iron-responsive element (IRE)-binding activity of IRP1 and the levels of phosphorylation of IRP1 are all increased. These findings indicate that oxidative stress caused by a SOD1 deficiency probably enhances the phosphorylation of and the conversion of IRP1 to the IRE-binding form, which may accelerate the reabsorption of iron by renal tubular cells. Kidney could play an important role in iron homeostasis under conditions of HA.  相似文献   

13.
14.
Iron regulatory proteins 1 and 2 (IRP1, IRP2) are key determinants of uptake and storage of iron by the liver, and are responsive to oxidative stress and hypoxia potentially at the level of both protein concentration and mRNA-binding activity. We examined the effect of hypoxia (1% O2) on IRP1 and IRP2 levels (Western blots) and mRNA-binding activity (gel shift assays) in human hepatoma HepG2 cells, and compared them with HEK 293 cells, a renal cell line known to respond to hypoxia. Total IRP binding to an iron responsive element (IRE) mRNA probe was increased several fold by hypoxia in HEK 293 cells, maximally at 4–8 h. An earlier and more modest increase (1.5- to 2-fold, peaking at 2 h and then declining) was seen in HepG2 cells. In both cell lines, IRP1 made a greater contribution to IRE-binding activity than IRP2. IRP1 protein levels were increased slightly by hypoxia in HEK 293 but not in HepG2 cells. IRP1 was distributed between cytosolic and membrane-bound fractions, and in both cells hypoxia increased both the amount and IRE-binding activity of the membrane-associated IRP1 fraction. Further density gradient fractionation of HepG2 membranes revealed that hypoxia caused an increase in total membrane IRP1, with a shift in the membrane-bound fraction from Golgi to an endoplasmic reticulum (ER)-enriched fraction. Translocation of IRP to the ER has previously been shown to stabilize transferrin receptor mRNA, thus increasing iron availability to the cell. Iron depletion with deferoxamine also caused an increase in ER-associated IRP1. Phorbol ester caused serine phosphorylation of IRP1 and increased its association with the ER. The calcium ionophore ionomycin likewise increased ER-associated IRP1, without affecting total IRE-binding activity. We conclude that IRP1 is translocated to the ER by multiple signals in HepG2 cells, including hypoxia, thereby facilitating its role in regulation of hepatic gene expression. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
Iron regulatory protein 1 (IRP1) is regulated through the assembly/disassembly of a [4Fe-4S] cluster, which interconverts IRP1 with cytosolic aconitase. A genetic screen to isolate Saccharomyces cerevisiae strains bearing mutations in genes required for the conversion of IRP1 to c-aconitase led to the identification of a previously uncharacterized, essential gene, which we call CFD1 (cytosolic Fe-S cluster deficient). CFD1 encodes a highly conserved, putative P-loop ATPase. A non-lethal mutation of CFD1 (cfd1-1) reduced c-aconitase specific activity in IRP1-transformed yeast by >90%, although IRP1 in these cells could be readily converted to c-aconitase in vitro upon incubation with iron alone. IRP1-transformed cfd1-1 yeast lacked EPR-detectable Fe-S clusters in c-aconitase, pointing to a defect in Fe-S cluster assembly. The specific activity of another cytosolic Fe-S protein, Leu1p, was also inhibited by >90% in cfd1-1 yeast, whereas activity of mitochondrial Fe-S proteins was not inhibited. Consistent with a cytosolic site of activity, Cfd1p was localized in the cytoplasm. To our knowledge, Cfd1p is the first cytoplasmic Fe-S cluster assembly factor described in eukaryotes.  相似文献   

17.
18.
19.
Iron homeostasis is tightly regulated, as cells work to conserve this essential but potentially toxic metal. The translation of many iron proteins is controlled by the binding of two cytoplasmic proteins, iron regulatory protein 1 and 2 (IRP1 and IRP2) to stem loop structures, known as iron-responsive elements (IREs), found in the untranslated regions of their mRNAs. In short, when iron is depleted, IRP1 or IRP2 bind IREs; this decreases the synthesis of proteins involved in iron storage and mitochondrial metabolism (e.g. ferritin and mitochondrial aconitase) and increases the synthesis of those involved in iron uptake (e.g. transferrin receptor). It is likely that more iron-containing proteins have IREs and that other IRPs may exist. One obvious place to search is in Complex I of the mitochondrial respiratory chain, which contains at least 6 iron-sulfur (Fe-S) subunits. Interestingly, in idiopathic Parkinson's disease, iron homeostasis is altered, and Complex I activity is diminished. These findings led us to investigate whether iron status affects the Fe-S subunits of Complex I. We found that the protein levels of the 75-kDa subunit of Complex I were modulated by levels of iron in the cell, whereas mRNA levels were minimally changed. Isolation of a clone of the 75-kDa Fe-S subunit with a more complete 5'-untranslated region sequence revealed a novel IRE-like stem loop sequence. RNA-protein gel shift assays demonstrated that a specific cytoplasmic protein bound the novel IRE and that the binding of the protein was affected by iron status. Western blot analysis and supershift assays showed that this cytosolic protein is neither IRP1 nor IRP2. In addition, ferritin IRE was able to compete for binding with this putative IRP. These results suggest that the 75-kDa Fe-S subunit of mitochondrial Complex I may be regulated by a novel IRE-IRP system.  相似文献   

20.
Cellular iron metabolism is essentially controlled by the binding of cytosolic iron regulatory proteins (IRP1 or IRP2) to iron-responsive elements (IREs) located on mRNAs coding for proteins involved in iron acquisition, utilization and storage. The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the most potent toxins of current interest that occurs as poisonous chemical in the environment. TCDD exposure has been reported to induce a broad spectrum of toxic and biological responses, including significant changes in gene expression for heme and iron metabolism associated with liver injury. Here, we have investigated the molecular effects of TCDD on the iron metabolism providing the first evidence that administration of the toxin TCDD to mammalian cells affects the maintenance of iron homeostasis. We found that exposure of Madin-Darby Bovine Kidney cell to TCDD caused a divergent modulation of IRP1 and IRP2 RNA-binding capacity. Interestingly, we observed a concomitant IRP1 down-regulation and IRP2 up-regulation thus determining a marked enhancement of transferrin receptor 1 (TfR-1) expression and a biphasic response in ferritin content. The changed ferritin content coupled to TfR-1 induction after TCDD exposure impairs the cellular iron homeostasis, ultimately leading to significant changes in the labile iron pool (LIP) extent. Since important iron requirement changes occur during the regulation of cell growth, it is not surprising that the dioxin-dependent iron metabolism dysregulation herein described may be linked to cell-fate decision, supporting the hypothesis of a central connection among exposure to dioxins and the regulation of critical cellular processes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号