首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of poly(A) site selection in adenovirus.   总被引:24,自引:4,他引:20       下载免费PDF全文
  相似文献   

2.
3.
4.
5.
6.
7.
Sequence conservation among mammalian poly(A) sites is limited to the sequence AAUAAA, coupled with an amorphous downstream U- or GU-rich region. Since these sequences may also occur within the coding region of mRNAs, additional information must be required to define authentic poly(A) sites. Several poly(A) sites have been shown to contain sequences outside the core elements that enhance the efficiency of 3' processing in vivo and in vitro. The human immunodeficiency virus type 1, equine infectious anemia virus, and adenovirus L1 3' processing enhancers have been shown to promote the binding of cleavage and polyadenylation specificity factor (CPSF), the factor responsible for recognition of AAUAAA, to the pre-mRNA, thereby facilitating the assembly of a stable 3' processing complex. We have used in vitro selection to examine the mechanism by which the human immunodeficiency virus type 1 3' processing enhancer promotes the interaction of CPSF with the AAUAAA hexamer. Surprisingly, RNAs selected for efficient polyadenylation were related by structure rather than sequence. Therefore, in the absence of extensive sequence conservation, our results strongly suggest that RNA structure is a critical determinant of poly(A) site recognition by CPSF and may play a key role in poly(A) site definition.  相似文献   

8.
9.
10.
11.
12.
Requirement of a downstream sequence for generation of a poly(A) addition site   总被引:43,自引:0,他引:43  
  相似文献   

13.
Poly(A) site processing of a pre-mRNA requires the participation of multiple nuclear factors. Two of these factors recognize specific sequences in the pre-mRNA and form a stable processing complex. Since these initial interactions are likely critical for the recognition of the poly(A) site and the efficiency of poly(A) site use, we have characterized these factors and the nature of their interaction with the pre-mRNA. The AAUAAA specificity factor PF2 is a large, multicomponent complex composed of at least five distinct polypeptides ranging in molecular size from 170 to 42 kDa. The 170-kDa polypeptide appears to mediate interaction with the pre-mRNA. Factor CF1, which provides specificity for the downstream G + U-rich element and stabilizes the PF2 interaction on the RNA, is also a multicomponent complex but is less complex than PF2. CF1 is composed of three polypeptides of molecular sizes 76, 64, and 48 kDa. UV cross-linking assays demonstrate that the 64-kDa polypeptide makes direct contact with the RNA, dependent on the G + U-rich downstream sequence element. Moreover, it is clear that these RNA-protein interactions are influenced by the apparent cooperative interaction involving PF2 and CF1, interactions that contribute to the efficiency of poly(A) site processing.  相似文献   

14.
Two simplified kinetic proofreading scanning (KPS) models were proposed to describe the 5' cap and 3' poly(A) tail dependency of eukaryotic translation initiation. In Model I, the initiation factor complex starts scanning and unwinding the secondary structure of the 5' untranslated region (UTR) from the 5' terminus of mRNA. In Model II, the initiation factor complex starts scanning from any binding site in the 5' UTR. In both models, following ATP hydrolysis, the initiation factor complex either dissociates from mRNA or continues to scan and unwind RNA secondary structure in the 5' UTR. This step repeats n times until the AUG codon is reached. These two models show very different cap and/or poly(A) tail dependency of translation initiation. The models predict that both cap and poly(A) tail dependencies of translation, and translatability of mRNAs are coupled with the structure of 5' UTR: the translation of mRNA with structured 5' UTR is strongly cap- and poly(A) tail-dependent; while translation of mRNA with unstructured 5' UTR is less cap- and poly(A) tail-dependent. We use these two models to explain: (1) the cap and poly(A) tail dependence of translation; (2) the effect of exogenous poly(A) on translation; (3) repression of host mRNA and translation of late adenovirus mRNA in the late phase of adenovirus infection; (4) repression of host mRNA and translation of Vaccinia virus mRNA in virus-infected cell; (5) heat shock repression of translation of normal mRNA and stimulation of translation of hsp mRNA; and (6) the synergistic effect of cap and poly(A) tail on stimulating translation. The kinetic proofreading scanning models provide a coherent interpretation of those phenomena.  相似文献   

15.
16.
17.
18.
19.
J McLauchlan  S Simpson  J B Clements 《Cell》1989,59(6):1093-1105
Extracts from herpes simplex virus-infected cells and from mock-infected cells have been compared for their ability to process at RNA poly(A) sites in vitro. Nuclear extracts from infected cells contain an activity that increases processing efficiency specifically at a late herpes simplex virus poly(A) site. By contrast, a second virus poly(A) site is processed with equal efficiency by nuclear extracts from infected and mock-infected cells. Using precursor RNAs containing these two virus poly(A) sites in tandem, which allows ready detection of the processing factor, we show that this specific activity is heat labile. Analysis of RNAs produced by virus recombinants that contain the poly(A) site sequences in tandem also indicates that increased processing at the late virus poly(A) site occurs in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号