首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
It was demonstrated that plasminogen and the plasmin heavy chain form a complex with an immobilized fibrinogen fragment E. The E-fragment interacts, in its turn, with the immobilized heavy chain; this interaction is provided for by the lysin binding sites of the plasminogen molecule. The plasmin light chain having no lysin binding sites is specifically absorbed on the immobilized fragment D, whereas the D-fragment--on the immobilized light chain. The elution is caused by arginine or benzamidine; 6-aminohexanoic acid does not affect this interaction. It is assumed that the interaction of plasminogen and plasmin with fibrin is provided for not only by the lysine binding but also by the benzamidine binding sites of the plasminogen molecule.  相似文献   

2.
Interaction of streptokinase and alpha-2-antiplasmin with plasmin and plasminogen fragments was compared. Binding sites on the enzyme become half-saturated, streptokinase and alpha-2-antiplasmin concentration being 8.5 and 30 nM, respectively. 6-Aminohexanoic acid in concentration of 20 mM reduces the adsorption of streptokinase and and alpha-2-antiplasmin by 20 and 60%, respectively. From all the investigated fragments, streptokinase shows the greatest affinity for mini-plasminogen and alpha-2-antiplasmin for kringles 1-3. Both proteins in the presence of 20 mM 6-aminohexanoic acid do not bind with kringle domains. Arginine dose 0.1 M does not influence streptokinase adsorption on mini-plasminogen and decreases the value of alpha-2-antiplasmin binding with mini-plasminogen by 50%. The data obtained indicate that plasminogen molecule has the sites of the highest affinity for streptokinase on the serine-proteinase domain, however for alpha-2-antiplasmin it is in the kringles 1-3. Streptokinase with equimolar quantity in respect of alpha-2-antiplasmin inhibits the adsorption of alpha-2-antiplasmin on the plasmin by 70% and in the presence of 6-aminohexanoic acid it is inhibited completely. Addition of streptokinase also increases the influence of increasing concentration of the acid. Inhibiting influence of streptokinase decreases, and that of 6-aminohexanoic acid increases, when plasmin is modified with diisopropylfluorophosphate in its active centre. At the same time maximum inhibition of streptokinase adsorption on the plasmin at different concentrations of alpha-2-antiplasmin and 6-aminohexanoic acid accounts for only 20%. We suppose that in the process of complex formation streptokinase competes with alpha-2-antiplasmin for the binding sites on the catalytic domain of the plasmin. Partial or complete blocking of the plasmin active centre contact zone by streptokinase effectively protects it from inhibition by alpha-2-antiplasmin.  相似文献   

3.
L A Miles  E F Plow 《Biochemistry》1986,25(22):6926-6933
An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [125I]EDP I, [125I]Glu-plasminogen, and [125I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [125I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and 1730 microM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region (EDP I, Glu-plasminogen, Lys-plasminogen, and the plasmin heavy chain) and did not react with those lacking an EDP I region [miniplasminogen, the plasmin light chain or EDP II (kringle 4)] or with tissue plasminogen activator or prothrombin, which also contain kringles. By immunoblotting analyses, a chymotryptic degradation product of Mr 20,000 was derived from EDP I that retained reactivity with the antibody. The high-affinity lysine binding site was equally available to the antibody probe in Glu- and Lys-plasminogen and also appeared to be unoccupied in the plasmin-alpha 2-antiplasmin complex. alpha 2-Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The primary inhibitor of plasmin in human plasma was purified by a four-step procedure involving fractional (NH(4))(2)SO(4) precipitation, ion-exchange chromatography on a column of DEAE-Sepharose CL-6B and affinity chromatography on both a plasminogen-CH-Sepharose 4B column and a column of 6-aminohexanoic acid covalently coupled through the carboxylate function to AH-Sepharose 4B. No impurities in the final preparation could be detected when tested by immunoelectrophoresis against a range of specific antisera or against rabbit anti-human serum. On polyacrylamide-gel electrophoresis the inhibitor preparation showed a single band. The dissociation constant for the inhibitor-plasminogen complex was determined to be approx. 3mum at pH7.8. The reactions of the inhibitor with human plasmin and with bovine trypsin were studied. Comparison of the results obtained confirms the hypothesis previously presented, namely that the reaction of the inhibitor with plasmin involves at least two steps, the initial rapid formation of an enzyme-inhibitor complex followed by a slow irreversible transition to another complex. The results also indicate that the reaction of the inhibitor with trypsin involves just a single, irreversible step, so that this reaction seems to be less complicated than that of the inhibitor with plasmin. The ways in which 6-aminohexanoic acid influences the reactions were studied. The same value for the dissociation constant (approx. 26mum) for 6-aminohexanoic acid is obtained for both its effect on the reaction of the inhibitor with trypsin and for competitive inhibition of trypsin. The inhibitory effect of 6-aminohexanoic acid thus seems to be due to its blocking of the active site of trypsin. In contrast with this, the inhibitory effects of l-lysine and 6-aminohexanoic acid on the inhibitor-plasmin reaction occur at concentrations much too low to affect the active site of plasmin. The possible dependence of the reaction of the inhibitor with plasmin on a second site(s) on plasmin is discussed.  相似文献   

5.
The heavy polypeptide chains of human Glu-plasmin and human Lys-plasmin have been isolated in native solvents, after partial reduction and carboxymethylation of the corresponding plasmins. Two major forms of each heavy chain can be eluted, after adsorption to Sepharose/lysine, utilizing a gradient of epsilon-aminocaproic acid as the eluant. The elution profile of these heavy chains is practically identical to the elution behavior previously observed for human Glu- and Lys-plasminogen, and human Glu- and Lys-plasmin adsorbed to these columns. Sedimentation velocity analysis of the heavy chain of human Glu-plasmin, in the presence of epsilon-aminocaproic acid, demonstrated that a gross conformational alteration occurs in this peptide accompanying binding of this amino acid. A much smaller conformational alteration occurs under similar circumstances with the human Lys-plasmin heavy chain. We find that the NH2-terminal peptide released in the Glu-plasminogen to Lys-plasminogen and Glu-plasmin to Lys-plasmin conversions is also released in the Glu-plasmin heavy chain to Lys-plasmin heavy chain conversion. This reaction is catalyzed at a significant rate only by plasmin and not by urokinase. Finally, no strong interaction between streptokinase and the isolated plasmin heavy chains is observed.  相似文献   

6.
The data presented in this paper show that when rabbit plasminogen is activated to plasmin by urokinase at least two peptide bonds are cleaved in the process. Urokinase first cleaves an internal peptide bond in plasminogen, leading to two-chain disulfide-linked plasmin molecule. The plasmin heavy chain of molecular weight 66,000 to 69,000 possesses an NH2-terminal amino acid sequence identical with the original plasminogen (molecular weight 88,000 to 92,000). The plasmin light chain of molecular weight 24,000 to 26,000 is known to be derived from the COOH-terminal portion of plasminogen. The plasmin generated during the activation of plasminogen is capable, by a feedback process, of cleaving a peptide of molecular weight 6,000 to 8,000 from the NH2 terminus of the heavy chain, producing a proteolytically modified heavy chain of molecular weight 58,000 to 62,000. Plasmin also can cleave this same peptide from the original plasminogen, yielding an altered plasminogen of molecular weight 82,000 to 86,000. This plasmin-altered plasminogen and the plasmin heavy chain derived from it by urokinase activation process NH2-terminal amino acid sequences which are identical with each other and with the plasminolytic product of the original plasmin heavy chain. These studies support a mechanism of activation of plasminogen by urokinase which involves loss of a peptide located on the NH2 terminus of plasminogen. However, these same results show that this NH2-terminal peptide need not be released from rabbit plasminogen prior to the cleavage of the internal peptide bond which leads to the two-chain plasmin molecule. Furthermore, these studies show that urokinase cannot remove this peptide from either the original rabbit plasminogen molecule or from the heavy chain of the initial plasmin formed.  相似文献   

7.
The reaction between antiplasmin (A) and a low-molecular-weight form of plasmin (P) proceeds in at least two steps: a fast reversible second-order reaction followed by a slower irreversible first-order transition, and may be represented by: P +A k1 in equilibrium k-1 PA k2 leads to PA'. The low-Mr plasmin, which is obtained by limited elastase digestion, is composed of an intact B chain and a small A chain lacking the lysine-binding sites. The k1 of the reaction is (6.5 +/- 0.5) x 10(5) M-1 s-1 which is 30--60 times smaller than that for normal plasmin and antiplasmin. The dissociation constant of the first step is 1.9 x 10(-9) M which is 10 times higher than for normal plasmin and antiplasmin. The rate constant of the second step is (4.2 +/- 0.2) x 10(-3) s-1 for both normal and low-Mr plasmin. Low Mr plasmin which has substrate bound to its active site does not react or reacts only very slowly with antiplasmin. The reaction rate, however, is only slightly influenced by 6-aminohexanoic acid in concentrations up to 1 mM which decrease the reaction rate of normal plasmin approximately 50-fold. The findings further indicate that the lysine-binding site(s) of plasmin are of great importance for the rate of its reaction with antiplasmin.  相似文献   

8.
Pretreatment of native plasminogen with plasmin or activators resulted in a pronounced increase in the binding of plasminogen to fibrin. The pretreated plasminogen was considered to be identical to the proteolytically degraded proenzyme with NH2-terminal lysine, valine or methionine, which is formed as an intermediate stage during activation of plasminogen. Bound plasminogen could be extracted by 6-aminohexanoic acid indicating a reversible binding between plasminogen and fibrin. Adsorption of pretreated plasminogen decreased when increasing concentrations of 6-aminohexanoic acid or trans-4-aminomethylcyclohexane-1-carboxylic acid (t-AMCHA) were present during fibrin formation. The concentration of amino acid producing a decrease in the binding of pretreated plasminogen to 0.5 of the amount bound in the absence of amino acid was 8.0-10(-5) M with 6-aminohexanoic acid and 1.7.10-5 M with t-AMCHA. The decrease in binding is most likely related to an effect of the amino acids on plasminogen, since agarose gel electrophoresis of pretreated plasminogen in the presence of 6-aminohexanoic acid or t-AMCHA showed a cathodic shift in mobility at the same range of concentrations of amino acid, which produced the decrease in binding of plasminogen to fibrin. Evidence is provided that the decrease in binding of proteolytically degraded plasminogen may result in an inhibition of fibrinolysis caused by activators.  相似文献   

9.
Native Glu-human plasminogen (Mr approximately 92,000 with NH2-terminal glutamic acid) is able to combine directly with streptokinase in an equivalent molar ratio, to yield a stoichiometric complex. The plasminogen moiety in the complex then undergoes streptokinase-induced conformational changes. As a result of such, an active center develops in the plasminogen moiety of the complex. This proteolytically active complex then activates plasminogen in the complex to plasmin and at least two peptide bonds are cleaved in the process. The data presented in this paper reveal that initially an internal peptide bond of plasminogen (in the complex) is cleaved to yield a two-chain, disulfide-linked plasmin molecule. The heavy chain (Mr approximately 67,000 with NH2-terminal glutamic acid) of this plasmin molecule has an identical NH2-terminal amico acid as the native plasminogen. The light chain (Mr approximately 25,000 with NH2-terminal valine) of plasmin is known to be derived from the COOH-terminal portion of the parent plasminogen molecule. A second peptide is then cleaved from the NH2-terminal end of the heavy chain of plasmin producing a proteolytically modified heavy chain (Mr =60.000 with NH2-terminal lysine). This cleavage of the NH2-terminal peptide from the heavy chain of plasmin is shown to be mediated by the dissociated free plasmin present in the activation mixture. Plasmin in the streptokinase-plasmin complex is unable to cleave this NH2-terminal peptide. This same NH2-terminal peptide can also be cleaved from native Glu-plasminogen or from the Glu-plasminogen-streptokinase complex by free plasmin and not by a complex of streptokinase-plasmin. From these studies we conclude (a) in the streptokinase-plasminogen complex, the NH2-terminal peptide need not be released prior to the cleavage of the essential Arg-Val peptide bond which leads to the formation of a two chain plasmin molecule and (b) that this peptide is cleaved from the native plasminogen or from the heavy chain of the initially formed plasmin in the streptokinase complex by free plasmin and not by the plasmin associated with streptokinase. In agreement with this, plasmin associated with streptokinase was unable to cleave the NH2-terminal peptide from the isolated native heavy chain possessing glutamic acid as the NH2-terminal amino acid; whereas free plasmin readily cleaved this peptide from the same isolated Glu-heavy chain.  相似文献   

10.
We have examined in detail the kinetics of binding of the serpin alpha 2-antiplasmin to the serine proteases alpha-chymotrypsin and plasmin. These represent model systems for serpin binding. We find, in contrast to earlier published results with alpha 2-antiplasmin and plasmin, that binding is reversible, and slow binding kinetics can be observed, under appropriate conditions. Binding follows a two-step process with both enzymes, with the formation of an initial loose complex which then proceeds to a tightly bound complex. In the absence of lysine and analogues, equilibrium between alpha 2-antiplasmin and plasmin is achieved rapidly, with an overall inhibition constant (Ki') of 0.3 pM. In the presence of tranexamic acid or 6-aminohexanoic acid, lysine analogues that mimic the effects of fibrin, plasmin binding kinetics are changed such that equilibrium is reached slowly following a lag phase after mixing of enzyme and inhibitor. The Ki' is also affected, rising to 2 pM in the presence of 6-aminohexanoic acid concentrations above 15 mM. Thus extrapolation to the in vivo situation indicates that complex formation in the presence of fibrin will be delayed, allowing a burst of enzyme activity following plasmin generation, but a tight, pseudoirreversible complex will result eventually. Chymotrypsin is more weakly inhibited by alpha 2-antiplasmin, exhibiting an overall Ki' of 0.1 nM, after two-stage complex formation. The inhibition constant for the initial loose complex (Ki) is very similar for both enzymes. The difference in binding strength between the two enzymes is accounted for by the dissociation rate constant of the second step of complex formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Inhibition of plasmin by fibrinogen.   总被引:1,自引:0,他引:1       下载免费PDF全文
The kinetics of inhibition of the amidolytic activity of plasmin on D-Val-L-Leu-L-Lys p-nitroanilide hydrochloride (S-2251) by fibrinogen and fibrin were determined. Reciprocal (1/v versus 1/[S]) plots of plasmin inhibition by 0.50 microM-fibrinogen showed a non-linear downward curve. The Hill coefficient (h) was 0.68, suggesting negative co-operativity. By contrast, fibrin produced a simple competitive inhibition of plasmin (Ki = 12 micrograms/ml). Addition of 0.1 mM-6-aminohexanoic acid shifted the non-linear curve obtained in the presence of fibrinogen to a straight line as for controls, indicating that 6-aminohexanoic acid abolishes the fibrinogen-induced inhibition. Transient exposure of the enzyme to pH 1.0 abrogates the ability of fibrinogen to inhibit plasmin activity. Acidification had no effect on the Vmax but increased the Km of plasmin. The present evidence for modulation of plasmin reveals a novel mechanism for control of fibrinolysis by fibrinogen, a component of the coagulation system and the precursor of the physiological substrate of plasmin.  相似文献   

12.
The lysine-binding-site-mediated interaction between plasmin and antiplasmin is of great importance for the fast rate of this reaction. It also plays an important part in regulating the fibrinolytic enzyme system. To identify structures important for its noncovalent interaction with plasmin, we constructed seven single-site mutants of antiplasmin by modifying charged amino acids in the C-terminal part of the molecule. All the variants were expressed in the Drosophila S2 cell system, purified, and shown to form stable complexes with plasmin. A kinetic evaluation revealed that two mutants of the C-terminal lysine (K452E or K452T) did not differ significantly from wild-type antiplasmin in their reactions with plasmin, in either the presence or absence of 6-aminohexanoic acid, suggesting that this C-terminal lysine is not important for this reaction. On the other hand, modification of Lys436 to Glu decreased the reaction rate about fivefold compared with wild-type. In addition, in the presence of 6-aminohexanoic acid, only a small decrease in the reaction rate was observed, suggesting that Lys436 is important for the lysine-binding-site-mediated interaction between plasmin and antiplasmin. Results from computerized molecular modelling of the C-terminal 40 amino acids support our experimental data.  相似文献   

13.
We have obtained direct evidence which we interpret to prove that an amino terminal peptide need not be released from rabbit plasminogen prior to its conversion to plasmin by urokinase. The single chain plasminogen molecule possesses an amino terminal amino acid sequence of NH2-glu-pro-leu-asp-asp. When this plasminogen is activated to plasmin by urokinase in the presence of the Kunitz bovine trypsin-plasmin-kallikrein inhibitor (BTI), a two chain disulfide linked molecule of plasmin is obtained. The heavy chain of this plasmin is directly derived from the original amino terminus of plasminogen since it possesses the identical amino terminal sequence as does native plasminogen. When the same plasminogen activation is carried out in the absence of BTI, the heavy chain of the plasmin obtained has a molecular weight of 6,000–8,000 less than the heavy chain of the plasmin obtained in the presence of this inhibitor. In addition, the heavy chain of this latter plasmin has an amino terminal sequence which differs from the original native plasminogen. These data show, in agreement with others, that the activation of plasminogen by urokinase is accompanied by the loss of an amino terminal peptide from plasminogen but also show, in contrast to the human plasminogen system, that cleavage of the internal peptide bond, leading to plasmin formation, can occur without cleavage of the amino terminal peptide.  相似文献   

14.
Streptokinase reacts very rapidly with human plasmin (rate constant 5.4 S 10(7) M-1 s-1) forming a 1:1 stoichiometric complex which has a dissociation constant of 5 X 10(-11) M. This plasmin-streptokinase complex is 10(5) times less reactive towards alpha 2-antiplasmin than plasmin, the inhibition rate constant being 1.4 X 10(2) M-1 s-1. The loss of reactivity of the streptokinase-plasmin complex towards alpha 2-antiplasmin is independent of the lysine binding sites in plasmin since low-Mr plasmin, which lacks these sites, and plasmin in which the sites have been blocked by 6-aminohexanoic acid, are both equally unreactive towards alpha 2-antiplasmin on reaction with streptokinase. The plasmin-streptokinase complex binds to Sepharose-lysine and Sepharose-fibrin monomer in the same fashion as free plasmin, showing that the lysine binding sites are fully exposed in the complex. Bovine plasmin is rapidly inhibited by human alpha 2-antiplasmin (k1 = 1.6 X 10(6) M-1 s-1) and similarly loses reactivity towards the inhibitor on complex formation with streptokinase (50% binding at 0.4 microM streptokinase).  相似文献   

15.
The effects of L-lysine, 6-aminohexanoic acid, and trans-4-aminomethylcy-clohexane-1-carboxylic acid on the catalytic activity of plasmin (EC 3.4.21.7) have been investigated. The kinetics of the plasmin-catlysed hydrolysis of alpha-N-benzoyl-L-arginine ethyl ester in the presence of these compounds have been studied at a number of different concentrations of the three modifiers. They each exert two effects on the reaction, an activation and an inhibition, the concentration dependencies of which are markedly different. They must therefore arise from two different interactions between plasmin and the modifier. The inhibition is competitive, so that it most probably results from direct interaction at the catalytic site. The activation is kinetically non-competitive. The experimental observations seem to be explained best by assuming that L-lysine and certain analogous compounds function as both allosteric modifiers and competitive inhibitors of plasmin.  相似文献   

16.
Using affinity chromatography, the binding of Lys-plasminogen to fibrinogen, fibrin and the consecutively formed products of their proteolysis was studied. The optimal conditions for this binding were elaborated, and the quantitative parameters of Lys-plasminogen binding to fibrinogen-Sepharose were determined. It was found that the interaction of Lys-plasminogen with fibrinogen- and fibrin-Sepharose is provided for by the lysine-binding sites of the proenzyme molecule. After partial hydrolysis of fibrinogen by plasmin, the amount of adsorbed plasminogen increases and the type of binding changes; part of the proenzyme molecules bind in the presence of 0.003 M 6-aminohexanoic acid, i.e., when lysine-binding sites appear to be blocked. A comparative study of plasminogen binding to fibrinogen fragments was carried out. The resistance of the complexes formed to the effect of 6-aminohexanoic acid and arginine competing for the binding sites was determined. The data obtained testify to the appearance of additional plasminogen-binding sites in the fibrinogen molecule during proteolysis. These sites are complementary for both lysine-and arginine-binding sites of the plasminogen molecule and are localized in the peripheral domains of the fibrinogen molecule.  相似文献   

17.
The light chain of plasmin, prepared by selective reduction of the interchain disulfide bridges, can be separated from the heavy chain by affinity adsorption onto Kunitz inhibitor/Sepharose. This adsorption involves the active center of plasmin because it does not occur if the light chain is derived from a plasmin previously blocked by the active site titrant p-nitrophenyl-p'-guanidinobenzoate. It can be deduced that the conformation of the inhibitor binding domain of plasmin is preserved in the free light chain.  相似文献   

18.
Plasminogen and plasminogen derivatives which contain lysine-binding sites were found to decrease the reaction rate between plasmin and alpha2-antiplasmin by competing with plasmin for the complementary site(s) in alpha2-antiplasmin. The dissocwation constant Kd for the interaction between intact plasminogen (Glu-plasminogen) and alpha2-antiplasmin is 4.0 microM but those for Lys-plasminogen or TLCK-plasmin are about 10-fold lower indicating a stronger interaction. The lysine-binding site(s) which is situated in triple-loops 1--3 in the plasmin A-chain is mainly responsible for the interaction with alpha2-antiplasmin. The interaction between Glu-plasminogen and alpha2-antiplasmin furthermore enhances the activation of Glu-plasminogen by urokinase to a comparable extent as 6-aminohexanoic acid, suggesting that similar conformational changes occur in the proenzyme after complex formation. Fibrinogen, fibrinogen digested with plasmin, purified fragment E and purified fragment D interfere with the reaction between plasmin and alpha2-antiplasmin by competing with alpha2-antiplasmin for the lysine-binding site(s) in the plasmin A-chain. The Kd obtained for these interactions varied between 0.2 microM and 1.4 microM; fragment E being the most effective. Thus the fibrinogen molecule contains several complementary sites to the lysine-binding sites located both in its NH2-terminal and COOH-terminal regions; these sites are to a large extent.  相似文献   

19.
We recently discovered several nonlysine-analog conformational modulators for plasminogen. These include SMTP-6, thioplabin B and complestatin that are low molecular mass compounds of microbial origin. Unlike lysine-analog modulators, which increase plasminogen activation but inhibit its binding to fibrin, the nonlysine-analog modulators enhance both activation and fibrin binding of plasminogen. Here we show that some nonlysine-analog modulators promote autoproteolytic generation of plasmin(ogen) derivatives with its catalytic domain undergoing extensive fragmentation (PMDs), which have angiostatin-like anti-endothelial activity. The enhancement of urokinase-catalyzed plasminogen activation by SMTP-6 was followed by rapid inactivation of plasmin due to its degradation mainly in the catalytic domain, yielding PMD with a molecular mass ranging from 68 to 77 kDa. PMD generation was observed when plasmin alone was treated with SMTP-6 and was inhibited by the plasmin inhibitor aprotinin, indicating an autoproteolytic mechanism in PMD generation. Thioplabin B and complestatin, two other nonlysine-analog modulators, were also active in producing similar PMDs, whereas the lysine analog 6-aminohexanoic acid was inactive while it enhanced plasminogen activation. Peptide sequencing and mass spectrometric analyses suggested that plasmin fragmentation was due to cleavage at Lys615-Val616, Lys651-Leu652, Lys661-Val662, Lys698-Glu699, Lys708-Val709 and several other sites mostly in the catalytic domain. PMD was inhibitory to proliferation, migration and tube formation of endothelial cells at concentrations of 0.3-10 microg.mL(-1). These results suggest a possible application of nonlysine-analog modulators in the treatment of cancer through the enhancement of endogenous plasmin(ogen) fragment formation.  相似文献   

20.
Enzyme kinetic plots relating the initial rate of activation of pro-urokinase to urokinase by plasmin, according to the concentration of substrate, were smooth downward curves and indicated that an apparent decrease in binding affinity occurred with increase in the concentration of pro-urokinase. Such nonlinear plots were obtained with plasmin 1 and also plasmin 2. Over sections of each curve it was possible to estimate apparent kinetic constants. At the uppermost concentrations of substrate tested, these were Km 2.9 microM and kcat 35.5 min-1 for plasmin 1, and at the lowermost concentrations, Km 9.5 nM and kcat 2.0 min-1. Linear plots were obtained when the single proteolytic cleavage was made by K5-plasmin or undegraded plasmin in the presence of 1.0 mM 6-aminohexanoic acid (6-AHa). Constants were estimated for catalysis of this reaction by K5 plasmin to be Km 6.0 microM and kcat 38 min-1 (r = 0.987). The catalytic efficiency of plasmin, at the lowermost concentrations of pro-urokinase tested, was therefore 33-fold higher than that of K5-plasmin. Plotting of data for the cleavage of pro-urokinase by plasmin 1 (in the absence of 6-AHa) according to the model of Hill, gave a slope of 0.5 at the lowermost concentrations of pro-urokinase increasing to 1.0 at higher concentrations (greater than 0.3 microM); such a profile is characteristic of negative cooperativity. The rates of formation of plasmin and urokinase in a mixture containing a low concentration of plasminogen and pro-urokinase were measured and compared to those predicted by a computer program designed to calculate theoretical rates using available kinetic data. The observed rates of generation of both plasmin and urokinase coincided to those predicted from the negative cooperativity model. The mechanism of the negative cooperativity may reside in a conformational change induced by binding of pro-urokinase to the kringle structure of plasmin. This property may be of significance in controlling the fibrinolytic properties of the urokinase-type plasminogen activator system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号