首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of rat brain prostaglandin D synthetase and swine brain prostaglandin D2 dehydrogenase were inhibited by some saturated and unsaturated fatty acids. Myristic acid was most potent among saturated straight-chain fatty acids so far tested. The IC50 values of this acid were 80 microM for prostaglandin D synthetase and 7 microM for prostaglandin D2 dehydrogenase, respectively. Little inhibition was found with methyl myristate and myristyl alcohol. The IC50 values of these derivatives were more than 200 microM for both enzymes, suggesting that the free carboxyl group was essential for the inhibition. The effects of cis double bond structure of fatty acids on the inhibition potency were examined by the use of the carbon 18 and 20 fatty acids. The inhibition potencies for both enzymes increased with the number of cis double bonds; the IC50 values of stearic, oleic, linoleic and linolenic acid were, respectively, more than 200, 60, 30 and 30 microM for prostaglandin D synthetase, and 20, 10, 8.5 and 7 microM for prostaglandin D2 dehydrogenase. Arachidonic acid also inhibited the activities of both enzymes with respective IC50 values of 40 microM for prostaglandin D synthetase and 3.9 microM for prostaglandin D2 dehydrogenase, while arachidic acid showed little inhibition. The kinetic studies with myristic acid and arachidonic acid demonstrated that the inhibition by these fatty acids was competitive and reversible for both enzymes. Myristic acid and other fatty acids also inhibited the activities of several enzymes in prostaglandin metabolism, although to a lesser extent. The IC50 values of myristic acid for prostaglandin E isomerase, thromboxane synthetase and NAD-linked prostaglandin dehydrogenase (type I) were 200, 700 and 100 microM, respectively. However, this fatty acid showed little inhibition on fatty acid cyclooxygenase (20% at 800 microM), glutathione-requiring prostaglandin D synthetase from rat spleen (20% at 800 microM), and NADP-linked prostaglandin dehydrogenase (type II) (no inhibition at 200 microM).  相似文献   

2.
The gastric antisecretory actions of (15S)-15-methyl prostaglandin E2 methyl ester (Me-PGE2) and Prostaglandin E2 (PGE2) were evaluated in the unanesthetized gastric fistula rhesus monkey. Secretion was submaximally stimulated by multiple subcutaneous injections of histamine acid phosphate given every hour for four consecutive hours. When a steady-state plateau of gastric secretion was reached, the PG's were administered as a single bolus dose either intravenously (i.v.) or intragastrically (i.g.). Both PG's inhibited histamine-stimulated gastric secretion. The PG's showed greater sensitivity in inhibiting acid concentration while not affecting volume output. Active i.v. and i.g. antisecretory doses of Me-PGE2 ranged from 3 to 10 μg/kg, while PGE2 showed significant antisecretory activity at i.v. bolus doses of 30–100 μg/kg and i.g. bolus dose of 1.0 mg/kg. Thus, Me-PGE2 is estimated to be at least 10 and 300 times more potent than PGE2 by the i.v. and i.g. administration routes, respectively. These findings indicate that the rhesus monkey shows some similarities to man in responsiveness to gastric secretory inhibition by E-prostaglandins.  相似文献   

3.
1.Granuloma was made by the subcutaneous injection of 2% carrageenin solution on the dorsum of male rats. Eight, 16, 24 and 72 h after the injection. the exudate from each rat granuloma was withdrawn and extracted for rpstaglandins. 2.Extracted prostaglandins were separated prostaglandin E and prostaglandin F group by silicic acid mini-column chromatography. Then the amount of prostaglandin E and prostaglandin F2alpha were determined by the radioimmunoassay method. 3.The levels of prostaglandin E in the granuloma exudates were 4.6 ng/ml at 8 h after the carrageenin injection, then decreased 3.6 ng/ml and to 1.1 ng/ml at 16 h and 24 h, respectively. Seventy-two h after the injection, prostaglandin E level was increased to 8.1 ng/ml. 4.The levels of prostaglandin F2alpha in the exudate were as follows: At 8 h after the carrageenin injection, the level was 9.4 ng/ml, then decreased to 1.3 ng/ml and to 0.8 ng/ml at 16 h and 24 h, respectively. Seventy-two h after the carrageenin injection, it was again elevated to 4.7 ng/ml. 5.The exudate of granuloma, 24 and 72 h after the carrageenin injection, was incubated with [3H]prostaglandin E1 at 37 degrees C for 30 min. Then the acidic ether extract was subjected to reversed phase partition chromatography. It was found that the exudate of 24 h and 72 h granuloma had little activity of prostaglandin 15alpha-hydroxy dehydrogenase.  相似文献   

4.
A sensitive and specific radioimmunoassay for prostaglandin D2 has been developed using its stabilized 11-methoxime derivative, which was obtained after treatment of prostaglandin D2 with methoxamine-HCl. The antiserum was obtained after injection of prostaglandin D2-methoxamine coupled to bovine serum albumin. A (125I)-Histamide prostaglandin D2-methoxamine tracer was prepared by iodination of the corresponding histamide, followed by thin layer chromatography purification. The sensitivity of the assay was 280 femtomoles per ml at 50% displacement. The cross reactivities were 15% with prostaglandin D1-methoxamine and less than 0.20% with other prostaglandins. Determination of the half-life of prostaglandin D2 in a solution containing albumin was also carried out, since it has been shown to catalyze prostaglandin D2 destruction. The unstability of this prostaglandin is due to the presence of a beta-hydroxy ketone group, and all prostaglandins possessing this labile moiety could be stabilized by such a derivatization before developing a radioimmunoassay.  相似文献   

5.
The prostaglandin D synthetase system was isolated from rat brain. Prostaglandin endoperoxide synthetase solubilized from a microsomal fraction catalyzed the conversion of arachidonic acid to prostaglandin H2 in the presence of heme and tryptophan. Prostaglandin D synthetase (prostaglandin endoperoxidase-D isomerase) catalyzing the isomerization of prostaglandin H2 to prostaglandin D2 was found predominantly in a cytosol fraction and was purified to apparent homogeneity with a specific activity of 1.7 mumol/min/mg of protein at 24 degrees C. The enzyme also acted upon prostaglandin G2 and produced a compound presumed to be 15-hydroperoxy-prostaglandin D2. Glutathione was not required for the enzyme reaction, but the enzyme was stabilized by thiol compounds including glutathione. The enzyme was inhibited by p-chloromercuribenzoic acid in a reversible manner. The purified enzyme was essentially free of the glutathione S-transferase activity which was found in the cytosol of brain.  相似文献   

6.
The 21-hour pyloric ligated (Shay) rat model was used to assess the ulcer-sparing potential of locally administered prostaglandin 15 (R) 15 methyl-E2 methyl ester. Animals receiving intraluminal injections of 25 or 50 ug prostaglandin/kg. body weight at the time of pyloric ligation showed a reduced incidence and severity of gastric and oesophageal ulceration when compared to controls. The mean acid content of the stomach at sacrifice was also lower in treated animals. The mechanism and significance of this ulcersparing effects are discussed.  相似文献   

7.
S Murota  I Morita 《Prostaglandins》1978,15(2):297-301
The effects of prostaglandin I2, 6-ketoprostaglandin F1alpha, prostaglandin E1 and thromboxane B2 on the vascular permeability response in rat carrageenin granuloma were studied with the aid of 131I- and 125I-human serum albumin as indicators for the measurement of local vascular permeability. A single injection of 5 microgram of prostaglandin I2 methyl ester or I2 sodium salt into the locus of the granulomatous inflammation elevated local vascular permeability 2.0-2.5 times over the control within 30 min. The potency was equal to that of the positive control prostaglandin E1 which has been known to be the most potent mediator in this index among several candidate prostaglandins for chemical mediator of inflammation. The other prostaglandin and thromboxane B2 tested were essentially inactive.  相似文献   

8.
Intravenous administration of prostaglandin D2 (2, 4 and 8 micrograms/kg) in the rat resulted in a dose-dependent decrease in arterial pressure with partial recovery occurring during the course of the experiment. Hematocrit and hemoglobin decreased in all groups, probably related to the blood withdrawal and volume replacement. Increase in serum glucose is not specific to prostaglandin D2 and a progressive increase occurred even in the vehicle controls. Despite the fact that arterial pressure decreased with the injection of this prostanoid, angiotensin-converting enzyme did not change significantly. The results of this study demonstrate no association between the administration of prostaglandin D2 and angiotensin-converting enzyme within the concentrations we have used in these experiments.  相似文献   

9.
Prostaglandin (PG) E2, D2, F2alpha and thromboxane B2 (TxB2) were determined in homogenates of rat brain by gas-chromatography--mass spectrometry. The level of PGD2 was 735 +/- 19 ng/g, of PGF2alpha 150 +/- 13 ng/g, of TxB2 112 ng/g and of PGE2 86 +/- 8 ng/g. The same relative proportions of cyclooxygenase products were found in incubates of unstimulated sliced rat brain. 14C-PGH2 was converted in high yield into PGD2 by enzyme(s) present in the soluble fraction of the homogenate. These results indicate that PGD2 is the major cyclooxygenase product in the central nervous system of the rat.  相似文献   

10.
Yang PC  Fang WD  Huang SY  Chung WB  Hsu WH 《Theriogenology》1996,46(7):1289-1293
We studied the effect of prostaglandin (PG) F(2alpha)-AGN 190851 on farrowing induction and compared it with that of PGF(2alpha)-oxytocin. Eighty crossbred, multiparous sows were randomly assigned to the following 4 treatment groups of 20 sows each: 1) control, saline-saline; 2) PGF(2alpha) (10 mg/sow)-oxytocin (30 IU/sow); 3) PGF(2alpha) (10 mg/sow)-AGN 190851 (0.06 mg/kg); and 4) PGF(2alpha) (10 mg/sow)-AGN 190851 (0.1 mg/kg). Either PGF(2alpha) or saline was administered intramuscularly on Day 111 of gestation at 11:30 h; AGN 190851, oxytocin or saline was administered intramuscularly 20 h after the first injection. The PGF(2alpha)-AGN 190851 (0.1 mg/kg) treated sows had the shortest mean farrowing interval (2.1 +/- 1.6 h, mean +/- SD) compared with the remaining treatment groups (control: 67.1 +/- 26.2 h; PGF(2alpha)-oxytocin: 5.6 +/- 6.7 h; PGF(2alpha)-AGN 190851 [0.06 mg/kg]: 3.0 +/- 2.8 h). Duration of farrowing, litter size, litter weight and interval from weaning to first estrus in sows were not significantly changed by these treatments. The PGF(2alpha)-oxytocin group had a significantly higher stillbirth rate than the control group, whereas the PGF(2alpha)-AGN 190851 (0.1 mg/kg) group had the lowest number of pigs born dead and stillbirth rate among the 4 treatment groups. These results suggested that the PGF(2alpha)-AGN 190851 combination can be used as an alternative method to PGF(2alpha)-oxytocin for synchronizing farrowing.  相似文献   

11.
The metabolic transformation of exogenous prostaglandin D2 was investigated in isolated perfused rat lung. Dose-dependent formation (2-150 ng) of 9 alpha,11 beta-prostaglandin F2, corresponding to about 0.1% of the perfused dose of prostaglandin D2, was observed by specific radioimmunoassay both in the perfusate and in lung tissue after a 5-min perfusion. To investigate the reason for this low conversion ratio, we analyzed the metabolites of tritium-labeled 9 alpha,11 beta-prostaglandin F2 and prostaglandin D2 by boric acid-impregnated TLC and HPLC. By 5 min after the start of perfusion, 9 alpha,11 beta-prostaglandin F2 disappeared completely from the perfusate and the major product formed remained unchanged during the remainder of the 30-min perfusion. The major product was separated by TLC and identified as 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2 by GC/MS. In contrast, pulmonary breakdown of prostaglandin D2 was slow and two major metabolites in the perfusate increased with time, each representing 56% and 11% of the total radioactivity at the end of the perfusion. The major product (56%) was identified as 13,14-dihydro-15-ketoprostaglandin D2 and the minor one (11%) was tentatively identified as 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2 based on the results from radioimmunoassays, TLC, HPLC, and the time course of pulmonary breakdown. These results demonstrate that the metabolism of prostaglandin D2 in rat lung involves at least two pathways, one by 15-hydroxyprostaglandin dehydrogenase and the other by 11-ketoreductase, and that the 9 alpha,11 beta-prostaglandin F2 formed is rapidly metabolized to 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2.  相似文献   

12.
Purification and characterization of rat brain prostaglandin D synthetase   总被引:6,自引:0,他引:6  
Prostaglandin D synthetase was purified 2,600-fold from rat brain to apparent homogeneity, as judged by polyacrylamide gel electrophoresis and ultracentrifugation. The purified enzyme was a monomeric protein with a molecular weight of 27,000 +/- 1,000. The pI value, sedimentation coefficient, and partial specific volume were 4.6, 4.1 s, and 0.73 ml/g, respectively. The enzyme was stable between pH 4 and 11 at the temperature lower than 25 degrees C and resistant to a heat treatment under alkaline conditions (pH 8-11). About 50% of the activity was detected after a heat treatment at 100 degrees C for 5 min at pH 10. However, the enzyme was readily inactivated by the isomerase reaction of prostaglandin H2 to prostaglandin D2. The enzyme required sulfhydryl compounds such as dithiothreitol, glutathione, beta-mercaptoethanol, cysteine, and cysteamine for the reaction, but stoichiometric oxidation of these sulfhydryl compounds was not observed. The optimum pH, Km value for prostaglandin H2, and the turnover number were 9.5, 14 microM, and 170 min-1, respectively. The antibody was raised against the purified enzyme in a rabbit, which showed only one positive band in immunoblotting after gel electrophoresis of crude extracts of the brain at the same position as that of the purified enzyme. More than 90% of the prostaglandin D synthetase activity in the brain was absorbed by an excess amount of the antibody, indicating that our preparation is a major component of the enzyme responsible for the biosynthesis of prostaglandin D2 in the brain.  相似文献   

13.
Conscious adult ewes prepared with nonocclusive indwelling vascular catheters were used to determine the mechanism by which heart rate increases during central administration of prostaglandin E2 (PGE2). Heart rate increased 14 bpm during steady-state intracarotid infusion of PGE2, 10 ng/kg/min (P less than 0.05). Intravenous atropine methyl bromide, 1 mg/kg, increased heart rate 26 bpm (P less than 0.05) 5 min after injection. Heart rate remained elevated 30 min after injection. The heart rate response to PGE2 plus atropine was greater than the heart rate response to either atropine or PGE2 alone (P less than 0.05). Propranolol, 1 mg/kg bolus plus intravenous infusion, 0.025 mg/kg/min, did not change resting heart rate. Propranolol attenuated but did not abolish the increase in heart rate caused by intracarotid PGE2. Although heart rate increased in response to PGE2 after administration of either propranolol or atropine alone, the combination of propranolol and atropine prevented any further increase in heart rate during subsequent PGE2 infusion. The increase in heart rate when all three drugs were given together was not different from the increase observed during atropine alone. Thus, both beta-adrenergic activation and muscarinic deactivation contribute to the PGE2-induced tachycardia.  相似文献   

14.
The contribution of sex steroids to sex-related differences in renal prostaglandin dehydrogenase activity and urinary prostaglandin excretion was examined in 7-8-week-old male and female rats subjected to sham-operation or gonadectomy at 3 weeks of age. Rats were injected subcutaneously twice over a 6-day interval with vehicle (peanut oil, 0.5 mg/kg) or with depot forms of testosterone (10 mg/kg), estradiol (0.1 mg/kg), progesterone (5 mg/kg), or with estradiol and progesterone combined (0.1 and 5 mg/kg). After the second injection, 24-h urine samples were collected for prostaglandin measurement by radioimmunoassay; the rats were killed, and renal and pulmonary prostaglandin dehydrogenase activities were determined by radiochemical assay. Renal prostaglandin dehydrogenase activity was 10-times higher in intact male rats than in intact females. Gonadectomy increased renal prostaglandin dehydrogenase activity 4-fold in females, but had no effect in males; estradiol, alone or combined with progesterone, markedly suppressed renal prostaglandin dehydrogenase activity in both sexes, while testosterone or progesterone alone had no effect. Pulmonary prostaglandin dehydrogenase did not differ between the sexes and was unaffected by gonadectomy or sex-steroid treatment. Intact female sham-operated rats excreted 70-100% more prostaglandin E2, prostaglandin F2 alpha, and 6-keto-prostaglandin F1 alpha in urine than did males; gonadectomy abolished the difference in urinary prostaglandin E2 excretion. Estradiol decreased urinary prostaglandin E2 in females but not in males; treatment with other sex steroids did not alter urinary prostaglandin excretion.  相似文献   

15.
9 alpha,11 beta-prostaglandin F2 was formed from prostaglandin D2 by its 11-ketoreductases in 100,000 x g supernatants of various bovine tissues in the presence of an NADPH-generating system. The reductase activities were high in liver (51.09 nmol/h/mg of protein), lung (24.99), and spleen (14.20); moderate in heart and pancreas (3.09-3.61); weak in stomach, intestine, colon, kidney, uterus, adrenal gland, and thymus (0.11-2.63); and undetectable in brain, retina, carotid artery, and blood (less than 0.10). No formation of prostaglandin F2 alpha from prostaglandin D2 was detected in all tissues. In immunotitration analyses with a polyclonal antibody specific for prostaglandin F synthetase, the reductase activities in lung and spleen showed identical titration curves to that of the purified synthetase and decreased to less than 15% of the initial activity under the condition of antibody excess. Prostaglandin F synthetase-immunoreactive protein in these two tissues showed peptide fingerprints identical to that of the purified enzyme after partial digestion with Staphylococcus aureus V8 protease. The antibody was partially cross-reactive to the reductase in liver (about 20% of that to the synthetase) but not to the reductase(s) in other tissues. The Km value for prostaglandin D2 of the reductase activity was the same in lung and spleen as that of the purified prostaglandin F synthetase (120 microM) but differed in liver (6 microM), heart, and pancreas (15 microM). The predominant distribution of prostaglandin F synthetase in lung and spleen was confirmed by radioimmunoassay (2.8 and 1.0 micrograms/mg protein, respectively) and Northern blot analyses. In immunoperoxidase staining, this enzyme was localized in alveolar interstitial cells and nonciliated epithelial cells in lung, histiocytes and/or dendritic cells in spleen, and a few interstitial cells in kidney and adrenal cortex.  相似文献   

16.
Pregnant hamsters were administered (SC) prostaglandin or vehicle on the morning of the 4th day of pregnancy. Serum progesterone was significantly depressed (p less than .01) at 0.5, 2, and 6 hours after treatment with 100 microgram PGF2alpha. Serum progesterone levels were unchanged 2 hours and 6 hours after treatment with 100 microgram PGF2beta and 2 hours after treatment with 1 mg PGF2beta. Progesterone levels were depressed to less than 1 ng/ml 6 hours after treatment with 1 mg PGF2beta. The specific uptake of 3H-PGF2alpha in whole hamster corpora lutea was significantly depressed 2 hours and 6 hours following 100 microgram PGF2alpha treatment. A 15% depression in specific uptake occurred 0.5 hour post-treatment. Treatment with 100 microgram PGF2beta resulted in no change. Administration of 1 mg PGF2beta resulted in depressed 3H-PGF2alpha uptake at both 2 and 6 hours post-treatment. Prostacyclin (PGI2) treatment resulted in no change in either 3H-PGF2alpha specific uptake or serum progesterone 2 hours after 100 microgram treatment SC. These parameters were both reduced approximately 30% 6 hours post-treatment. Treatment with 6-keto-PGF1alpha resulted in a complete lack of measurable 3H-PGF2alpha uptake and serum progesterone levels less than 1 ng/ml at both 2 and 6 hours after treatment with 1 mg SC.  相似文献   

17.
The influence of methyl esterification of the carboxyl group of PGE1 on the gastric antisecretory and antiulcer activities were studied. The gastric antisecretory effects of PGE1 free acid and PGE1 methyl ester (PGE1ME) were studied in the Heidenhain pouch dog. Secretion was stimulated with constant intravenous infusion of histamine dihydrochloride. When a steady-state plateau of gastric secretion had been reached, the prostaglandins were administered either by a single intravenous bolus (10.0 mug/kg) or by continuous infusion (1.0 mug/kg/min). PGE1ME was found to be slightly more potent and longer-acting than PFE1 when administered by a single i.v. bolus. PGE1ME was also shown to be more potent than PGE1 when infused intravenously for a two-hour period. PGE1ME caused a significant alteration in gastric juice concentration of hydrogen and sodium ions in an inverse relationship. Potassium and chloride concentration were not altered from pre-existing steady-state values following administration of either form of prostaglandin. Similarly, PGE1ME was also found to possess significantly greater antiulcer activity in the rat forced-exertion ulcer test. These findings support the hypothesis that methyl esterification of the prostaglandin molecule will increase some of the biological actions of PGE1 through inhibition of metabolic beta-oxidation of the carboxylic side chain.  相似文献   

18.
Dilatation of the cervix with prostaglandin analogues prior to vaginal termination of pregnancy was attempted in 125 nulliparous women in the first trimester of pregnancy. The patients were divided into five groups (25 in each group) and given a single extra-amniotic dose of one of the following prostaglandin analogues 14-16 hours prior to the evacuation of the uterus by vacuum aspiration. (Group A) 15 (S) 15 methyl PGE2 (free acid); (Group B) 15 (S) 15 methyl PGE2 methyl ester; (Group C) 15 (S) 15 methyl PGF2alpha (free acid); (Group D) 15 (S) 15 methyl PGF2alpha methyl ester and(Group E) a mixture of 15 (S) 15 methyl PGE2methyl ester and 15 (S) 15 methyl PGF2alpha methyl ester. Evacuation of the uterus without mechanical dilatation of the cervix was possible in 111 (90%) of the patients. In an additional 10 patients (8%) there was some degree of cervical dilatation and further mechanical dilatation could be performed easily. With the combination of 15 (S) 15 methyl PGE2 methyl ester and 15 (S) 15 methyl PGF2alpha methyl ester the incidence of gastrointestinal side effects and pyrexia were considerably reduced.  相似文献   

19.
Pregnant hamsters were administered (SC) prostaglandin or vehicle on the morning of the 4th day of pregnancy. Serum progesterone was significantly depressed (p<.01) at 0.5, 2, and 6 hours after treatment with 100 μg PGF. Serum progesterone levels were unchanged 2 hours and 6 hours after treatment with 100 μg PGF and 2 hours after treatment with 1 mg PGF. Progesterone levels were depressed to less than 1 ng/ml 6 hours after treatment with 1 mg PGF. The specific uptake of 3H-PGF in whole hamster corpora lutea was significantly depressed 2 hours and 6 hours following 100 μg PGF treatment. A 15% depression in specific uptake occurred 0.5 hour post-treatment. Treatment with 100 μg PGF resulted in no change. Administration of 1 mg PGF resulted in depressed 3H-PGF uptake at both 2 and 6 hours post-treatment.Prostacyclin (PGI2) treatment resulted in no change in either 3H-PGF specific uptake or serum progesterone 2 hours after 100 μg treatment SC. These parameters were both reduced approximately 30% 6 hours post-treatment. Treatment with 6-keto-PGF resulted in a complete lack of measurable 3H-PGF uptake and serum progesterone levels less than 1 ng/ml at both 2 and 6 hours after treatment with 1 mg SC.  相似文献   

20.
Increased production of prostaglandin D2 was recently demonstrated in patients with systemic mastocytosis. One female patient investigated with mastocytosis was found to have overproduction of prostaglandin D2 of such magnitude (150-fold above normal) that it provided the unique opportunity to delineate the metabolic fate of endogenously synthesized prostaglandin D2. A five percent aliquot of a twenty-four hour urine collection from this patient was extracted, purified by silicic acid chromatography, methylated, and finally subjected to high pressure liquid chromatography. Column fractions collected were derivatized and analyzed by gas chromatography-mass spectrometry. Increased quantities of sixteen urinary metabolites were identified and included a series of metabolites retaining the PGD-ring as well as a series of metabolites with a PGF-ring. PGF-ring metabolites were excreted in approximately 4-fold greater relative abundance than PGD-ring metabolites. More than one apparent isomeric form of some PGF-ring metabolites were found. The predominant urinary metabolite was 2,3-dinor-prostaglandin F2. This study provides evidence that endogenously synthesized prostaglandin D2 is converted in substantial part to prostaglandin F2 metabolites in vivo in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号