首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enterococcus faecalis is an intestinal commensal that produces extracellular superoxide (O(2)(*-)) through autoxidation of membrane-associated demethylmenaquinone. To assess free radical production by E. faecalis in vivo, intestinal tracts of rats were colonized using wild-type E. faecalis or a mutant strain with attenuated O(2)(*-) production. Ex vivo electron paramagnetic resonance spin trapping study of colonic contents (mean +/- SD) showed 1.4 +/- 1.5 and 0.094 +/- 0.24 microM 5,5-dimethyl-1-pyrroline-N-oxide-hydroxyl radical adduct/gm stool for rats colonized with wild-type and mutant strains, respectively (p = .002). In vivo hydroxyl radical production was further assayed by aromatic hydroxylation using phenyl N-tert-butylnitrone (PBN) and D-phenylalanine. Hydroxylated PBN and D-phenylalanine products were recovered from stool (microM/gm colonic contents/10(9) colony forming units) and urine (microM/h/ml), respectively, and quantified using electrochemical detection. Hydroxylated (OH) PBNs and isomeric tyrosines (hydroxylated phenylalanine) were significantly increased (mean +/- SD) for rats colonized with wild-type E. faecalis (2-OH PBN, 63 +/- 58; 3-OH PBN, 63 +/- 84; ortho-tyrosine, 31 +/- 27; meta-tyrosine, 17 +/- 14) compared to the mutant strain (2-OH PBN, 2.5 +/- 7.3 (p < .001); 3-OH PBN, 3.9 +/- 12.3 (p = .01); ortho-tyrosine, 1.9 +/- 6.0 (p < .001); meta-tyrosine, 1.5 +/- 3.4 (p = .03)). Similar differences were observed following in vitro incubations of these bacteria with aromatic targets. These results confirm in vivo production of hydroxyl radical by E. faecalis colonizing the intestine, and indicate this bacterium may be a potent source of oxidative stress on the intestinal epithelium.  相似文献   

2.
Enterococcus faecalis is a human intestinal commensal that produces extracellular superoxide, hydrogen peroxide, and hydroxyl radical while colonizing the intestinal tract. To determine whether dietary factors implicated in colorectal cancer affect oxidant production by E. faecalis, radicals were measured in rats colonized with this microorganism while on diets supplemented with iron or phytic acid. Hydroxyl radical activity was measured by assaying for aromatic hydroxylation products of D-phenylalanine using reverse-phase high-performance liquid chromatography and electrochemical detection. In vitro, as expected, iron enhanced, and phytic acid decreased, hydroxyl radical formation by E. faecalis. For rats colonized with E. faecalis given supplemental dietary iron (740 mg elemental iron as ferric phosphate per kg diet) or phytic acid (1.2% w/w), no differences were found in concentrations of urinary ortho- or meta- isomers of D-phenylalanine compared to rats on a basal diet. Aqueous radicals in colonic contents were further assessed ex vivo by electron spin resonance using 5,5-dimethyl-1-pyrroline-N-oxide as a spin trap. Mixtures of thiyl (sulfur-centered) and oxygen-centered radicals were detected across all diets. In vitro, similar spectra were observed when E. faecalis was incubated with hydrogen sulfide, air-oxidized cysteine, or an alkylsulfide, as typical sulfur-containing compounds that might occur in colonic contents. In conclusion, intestinal colonization with E. faecalis in a rat model generates both thiyl and oxygen-centered radicals in colonic contents. Radical formation, however, was not significantly altered by short-term dietary supplementation with iron or phytic acid.  相似文献   

3.
Methylene blue competes 100 to 600 times more effectively than paraquat for reduction by three different flavo-containing enzymes; xanthine oxidase, NADH cytochrome c reductase, and NADPH cytochrome c reductase. Paraquat and methylene blue both interact with deflavo xanthine oxidase, indicating that neither electron acceptor reacted at the FAD site of the enzyme where molecular oxygen is reduced to superoxide. As the paraquat radical also directly reduced acetylated cytochrome c the hemeprotein could not be utilized for measuring superoxide production in the presence of the herbicide. In the presence of cytochrome c the methylene blue caused a sharp decrease in both paraquat-induced superoxide and hydroxyl radical production.  相似文献   

4.
The respiratory chain of Escherichia?coli contains three quinones. Menaquinone and demethylmenaquinone have low midpoint potentials and are involved in anaerobic respiration, while ubiquinone, which has a high midpoint potential, is involved in aerobic and nitrate respiration. Here, we report that demethylmenaquinone plays a role not only in trimethylaminooxide-, dimethylsulfoxide- and fumarate-dependent respiration, but also in aerobic respiration. Furthermore, we demonstrate that demethylmenaquinone serves as an electron acceptor for oxidation of succinate to fumarate, and that all three quinol oxidases of E.?coli accept electrons from this naphtoquinone derivative.  相似文献   

5.
We have cloned an Enterococcus faecalis gene cluster, cydABCD, which when expressed in Bacillus subtilis results in a functional cytochrome bd terminal oxidase. Our results indicate that E. faecalis V583 cells have the capacity of aerobic respiration when grown in the presence of heme.  相似文献   

6.
Glycerol can be oxidized by rat liver microsomes to formaldehyde in a reaction that requires the production of reactive oxygen intermediates. Studies with inhibitors, antibodies, and reconstituted systems with purified cytochrome P4502E1 were carried out to evaluate whether P450 was required for glycerol oxidation. A purified system containing phospholipid, NADPH-cytochrome P450 reductase, P4502E1, and NADPH oxidized glycerol to formaldehyde. Formaldehyde production was dependent on NADPH, reductase, and P450, but not phospholipid. Formaldehyde production was inhibited by substrates and ligands for P4502E1, as well as by anti-pyrazole P4502E1 IgG. The oxidation of glycerol by the reconstituted system was sensitive to catalase, desferrioxamine, and EDTA but not to superoxide dismutase or mannitol, indicating a role for H2O2 plus non-heme iron, but not superoxide or hydroxyl radical in the overall glycerol oxidation pathway. The requirement for reactive oxygen intermediates for glycerol oxidation is in contrast to the oxidation of typical substrates for P450. In microsomes from pyrazole-treated, but not phenobarbital-treated rats, glycerol oxidation was inhibited by anti-pyrazole P450 IgG, anti-hamster ethanol-induced P450 IgG, and monoclonal antibody to ethanol-induced P450, although to a lesser extent than inhibition of dimethylnitrosamine oxidation. Anti-rabbit P4503a IgG did not inhibit glycerol oxidation at concentrations that inhibited oxidation of dimethylnitrosamine. Inhibition of glycerol oxidation by antibodies and by aminotriazole and miconazole was closely associated with inhibition of H2O2 production. These results indicate that P450 is required for glycerol oxidation to formaldehyde; however, glycerol is not a direct substrate for oxidation to formaldehyde by P450 but is a substrate for an oxidant derived from interaction of iron with H2O2 generated by cytochrome P450.  相似文献   

7.
8.
Uninduced rat liver microsomes and NADPH-Cytochrome P-450 reductase, purified from phenobarbital-treated rats, catalyzed an NADPH-dependent oxidation of hydroxyl radical scavenging agents. This oxidation was not stimulated by the addition of ferric ammonium sulfate, ferric citrate, or ferric-adenine nucleotide (AMP, ADP, ATP) chelates. Striking stimulation was observed when ferric-EDTA or ferric-diethylenetriamine pentaacetic acid (DTPA) was added. The iron-EDTA and iron-DTPA chelates, but not unchelated iron, iron-citrate or iron-nucleotide chelates, stimulated the oxidation of NADPH by the reductase in the absence as well as in the presence of phenobarbital-inducible cytochrome P-450. Thus, the iron chelates which promoted NADPH oxidation by the reductase were the only chelates which stimulated oxidation of hydroxyl radical scavengers by reductase and microsomes. The oxidation of aminopyrine, a typical drug substrate, was slightly stimulated by the addition of iron-EDTA or iron-DTPA to the microsomes. Catalase inhibited potently the oxidation of scavengers under all conditions, suggesting that H2O2 was the precursor of the hydroxyl radical in these systems. Very high amounts of superoxide dismutase had little effect on the iron-EDTA-stimulated rate of scavenger oxidation, whereas the iron-DTPA-stimulated rate was inhibited by 30 or 50% in microsomes or reductase, respectively. This suggests that the iron-EDTA and iron-DTPA chelates can be reduced directly by the reductase to the ferrous chelates, which subsequently interact with H2O2 in a Fenton-type reaction. Results with the reductase and microsomal systems should be contrasted with results found when the oxidation of hypoxanthine by xanthine oxidase was utilized to catalyze the production of hydroxyl radicals. In the xanthine oxidase system, ferric-ATP and -DTPA stimulated oxidation of scavengers by six- to eightfold, while ferric-EDTA stimulated 25-fold. Ferric-desferrioxamine consistently was inhibitory. Superoxide dismutase produced 79 to 86% inhibition in the absence or presence of iron, indicating an iron-catalyzed Haber-Weiss-type of reaction was responsible for oxidation of scavengers by the xanthine oxidase system. These results indicate that the ability of iron to promote hydroxyl radical production and the role that superoxide plays as a reductant of iron depends on the nature of the system as well as the chelating agent employed.  相似文献   

9.
Representative thiazines, xanthenes, acridines, and phenazines photosensitized the oxidation of reduced pyridine nucleotides and reduced glutathione when illuminated with low intensity visible light. Photooxidation resulted in oxygen consumption and in superoxide generation, assayed as the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c. The major pathway of electron transfer involved dye reduction rather than singlet oxygen-mediated oxidation of the substrate, as demonstrated by the relative insensitivity of the oxidation to inhibition by sodium azide and by the observable bleaching of the dye. Hydrogen peroxide was a stable end product of photooxidation. Photosensitive dyes were photoreduced intracellularly. These dyes were transported across the membranes of Escherichia coli B and stimulated a light- and concentration-dependent increase in the cyanide-insensitive respiration. Dyes reduced intracellularly subsequently diffused out of the cell where they reduced extracellular cytochrome c. The photosensitive dyes examined in this study exhibited a light-dependent bacteriostatic effect on E. coli B grown in nutrient broth, manifested as an increased lag prior to growth. Restoration of growth coincided with increased levels of SOD, and the intracellular level of SOD correlated with the level of illumination, the dye concentration, and the reactivity of the dye to NADH in vitro. The thiazine dye, toluidine blue o, imposed a light- and oxygen-dependent lethality on E. coli B grown in glucose minimal medium. Toxicity was relieved by hydroxyl radical scavengers, and their ability to protect the cells was proportional to their reactivity with the hydroxyl radical. The results indicate that oxygen radicals and related species mediate photodynamic effects in E. coli B.  相似文献   

10.
Bacterial quinones were extracted with pentane, and homologues or other quinones were reincorporated. In spite of the redox potential difference of 110 mV, menaquinone and demethylmenaquinone could replace each other in aerobic electron transport and fumarate respiration ofHaemophilus influenzae RAMC 18 Bensted andProteus mirabilis Harding & Nicholson. The enzymes involved may recognize the naphthoquinone structure and are not specific for menaquinone or demethylmenaquinone. Ubiquinone was not replaced in aerobic electron transport by naphthoquinones withPseudomonas fluorescens 28/5 Rhodes orAcinetobacter sp. 661/60 Mannheim, probably owing to the specificity for benzoquinones of the enzymes involved, since the redox potential difference between demethylmenaquinone and ubiquinone is only 76 mV.Haemophilus parainfluenzae 429 Pittman, which resembles aerobic bacteria with respect to the terminal electron transport system, could incorporate demethylmenaquinone or menaquinone. This organism seems to be defective in the synthesis of naphthoquinones but possesses the enzyme system for fumarate respiration.Haemophilus influenzae RAMC 18 Bensted, which produces only demethylmenaquinone, seems to be defective in synthesizing ubiquinone, but it also possesses the enzymes for a ubiquinonemediated aerobic respiration.  相似文献   

11.
The mechanism of benzene oxygenation in liver microsomes and in reconstituted enzyme systems from rabbit liver was investigated. It was found that the NADPH-dependent transformation of benzene to water-soluble metabolites and to phenol catalyzed by cytochrome P-450 LM2 in membrane vesicles was inhibited by catalase, horseradish peroxidase, superoxide dismutase, and hydroxyl radical scavengers such as mannitol, dimethyl sulfoxide, and catechol, indicating the participation of hydrogen peroxide, superoxide anions, and hydroxyl radicals in the process. The cytochrome P-450 LM2-dependent, hydroxyl radical-mediated destruction of deoxyribose was inhibited concomitantly to the benzene oxidation. Also the microsomal benzene metabolism, which did not exhibit Michaelis-Menten kinetics, was effectively inhibited by six different hydroxyl radical scavengers. Biphenyl was formed in the reconstituted system, indicating the cytochrome P-450-dependent production of a hydroxycyclohexadienyl radical as a consequence of interactions between hydroxyl radicals and benzene. The formation of benzene metabolites covalently bound to protein was efficiently inhibited by radical scavengers but not by epoxide hydrolase. The results indicate that the microsomal cytochrome P-450-dependent oxidation of benzene is mediated by hydroxyl radicals formed in a modified Haber-Weiss reaction between hydrogen peroxide and superoxide anions and suggest that any cellular superoxide-generating system may be sufficient for the metabolic activation of benzene and structurally related compounds.  相似文献   

12.
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.  相似文献   

13.
The one-electron reduction of redox-active chemotherapeutic agents generates highly toxic radical anions and reactive oxygen intermediates (ROI). A major enzyme catalyzing this process is cytochrome P450 reductase. Because many tumor cells highly express this enzyme, redox cycling of chemotherapeutic agents in these cells may confer selective antitumor activity. Nitrofurantoin is a commonly used redox-active antibiotic that possesses antitumor activity. In the present studies we determined whether nitrofurantoin redox cycling is correlated with cytochrome P450 reductase activity and cytotoxicity in a variety of cell lines. Recombinant cytochrome P450 reductase was found to support redox cycling of nitrofurantoin and to generate superoxide anion, hydrogen peroxide, and, in the presence of redox-active iron, hydroxyl radicals. This activity was NADPH dependent and inhibitable by diphenyleneiodonium, indicating a requirement for the flavin cofactors in the reductase. Nitrofurantoin-induced redox cycling was next analyzed in different cell lines varying in cytochrome P450 reductase activity including Chinese hamster ovary cells (CHO-OR) constructed to overexpress the enzyme. Nitrofurantoin-induced hydrogen peroxide production was 16-fold greater in lysates from CHO-OR cells than from control CHO cells. A strong correlation between cytochrome P450 reductase activity and nitrofurantoin-induced redox cycling among the cell lines was found. Unexpectedly, no correlation between nitrofurantoin-induced ROI production and cytotoxicity was observed. These data indicate that nitrofurantoin-induced redox cycling and subsequent generation of ROI are not sufficient to mediate cytotoxicity and that cytochrome P450 reductase is not a determinant of sensitivity to redox-active chemotherapeutic agents.  相似文献   

14.
The respiratory activities of E. coli with H2 as donor and with nitrate, fumarate, dimethylsulfoxide (DMSO) or trimethylamine N-oxide (TMAO) as acceptor were measured using the membrane fraction of quinone deficient strains. The specific activities of the membrane fraction lacking naphthoquinones with fumarate, DMSO or TMAO amounted to 2% of those measured with the membrane fraction of the wild-type strain. After incorporation of vitamin K1 [instead of menaquinone (MK)] into the membrane fraction deficient of naphthoquinones, the activities with fumarate or DMSO were 92% or 17%, respectively, of the activities which could be theoretically achieved. Incorporation of demethylmenaquinone (DMK) did not lead to a stimulation of the activities of the mutant. In contrast, the electron transport activity with TMAO was stimulated by the incorporation of either vitamin K1 or DMK. Nitrate respiration was fully active in membrane fractions lacking either naphthoquinones or Q, but was 3% of the wild-type activity, when all quinones were missing. Nitrate respiration was stimulated on the incorporation of either vitamin K1 or Q into the membrane fraction lacking quinones, while the incorporation of DMK was without effect. These results suggest that MK is specifically involved in the electron transport chains catalyzing the reduction of fumarate or DMSO, while either MK or DMK serve as mediators in TMAO reduction. Nitrate respiration requires either Q or MK.Abbreviations DMK demethylmenaquinone - MK menaquinone - Q ubiquinone - DMSO dimethylsulfoxide - TMAO trimethylamine N-oxide - DMS dimethylsulfide - TMA trimethylamine - BV benzylviologen  相似文献   

15.
Acetonitrile extracts of cigarette tar inhibit state 3 and state 4 respiration of intact mitochondria. Exposure of respiring submitochondrial particles to acetonitrile extracts of cigarette tar results in a dose-dependent inhibition of oxygen consumption and reduced nicotinamide adenine dinucleotide (NADH) oxidation. This inhibition was not due to a solvent effect since acetonitrile alone did not alter oxygen consumption or NADH oxidation. Intact mitochondria are less sensitive to extracts of tar than submitochondrial particles. The NADH-ubiquinone (Q) reductase complex is more sensitive to inhibition by tar extract than the succinate-Q reductase and cytochrome complexes. Nicotine or catechol did not inhibit respiration of intact mitochondria. Treatment of submitochondrial particles with cigarette tar results in the formation of hydroxyl radicals, detected by electron spin resonance (ESR) spin trapping. The ESR signal attributable to the hydroxyl radical spin adduct requires the presence of NADH and is completely abolished by catalase and to a lesser extent superoxide dismutase (SOD). Catalase and SOD did not protect the mitochondrial respiratory chain from inhibition by tar extract, indicating that the radicals detected by ESR spin trapping are not responsible for the inhibition of the electron transport. We propose that tar causes at least two effects: (1) Tar components interact with the electron transport chain and inhibit electron flow, and (2) tar components interact with the electron transport chain, ultimately to form hydroxyl radicals.  相似文献   

16.
In vivo administration of acetone influences a variety of reactions catalyzed by rat liver microsomes. The effect of chronic treatment with acetone (1% acetone in the water for 10-12 days) on interaction with iron and subsequent oxygen radical generation by liver microsomes was evaluated. Microsomes from the acetone-treated rats displayed elevated rates of H2O2 generation, an increase in iron-dependent lipid peroxidation, and enhanced chemiluminescence upon the addition of t-butylhydroperoxide. The ferric EDTA-catalyzed production of formaldehyde from DMSO or of ethylene from 2-keto-4-thiomethylbutyrate was increased 2-fold after acetone treatment. This increase in hydroxyl radical generation was accompanied by a corresponding increase in NADPH utilization and was sensitive to inhibition by catalase and a competitive scavenger, ethanol, but not to superoxide dismutase. In vitro addition of acetone to microsomes had no effect on oxygen radical generation. Associated with the chronic acetone treatment was a 2-fold increase in the microsomal content of cytochrome P-450 and in the activity of NADPH-cytochrome-P-450 reductase. It appears that increased oxygen radical generation by microsomes after chronic acetone treatment reflects the increase in the major enzyme components which comprise the mixed-function oxidase system.  相似文献   

17.
Formation of free radical intermediates from 1--methyl-4-phenylpyridinium ion(MPP+) has been studied using spin-trapping techniques. Incubation of MPP+ with purified NADPH cytochrome P-450 reductase and NADPH under anaerobic conditions failed to produce any detectable radical intermediates. However, in the presence of air and a spin-trap, a significant stimulation of superoxide and hydroxyl radicals was detected. Formation of these toxic radicals from MPP+ was inhibited by superoxide dismutase, catalase, and ethanol. Under identical conditions, however, considerably less of these radicals were formed with MPP+ in comparison to paraquat, a lung toxin containing two pyridinium moieties.  相似文献   

18.
Evidence presented in this report suggests that the hydroxyl radical (OH.), which is generated from liver microsomes is an initiator of NADPH-dependent lipid peroxidation. The conclusions are based on the following observations: 1) hydroxyl radical production in liver microsomes as measured by esr spin-trapping correlates with the extent of NADPH induced microsomal lipid peroxidation as measured by malondialdehyde formation; 2) peroxidative degradation of arachidonic acid in a model OH · generating system, namely, the Fenton reaction takes place readily and is inhibited by thiourea, a potent OH · scavenger, indicating that the hydroxyl radical is capable of initiating lipid peroxidation; 3) trapping of the hydroxyl radical by the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide prevents lipid peroxidation in liver microsomes during NADPH oxidation, and in the model system in the presence of linolenic acid. The possibility that cytochrome P-450 reductase is involved in NADPH-dependent lipid peroxidation is discussed. The optimal pH for the production of the hydroxyl radical in liver microsomes is 7.2. The generation of the hydroxyl radical is correlated with the amount of microsomal protein, possibly NADPH cytochrome P-450 reductase. A critical concentration of EDTA (5 × 10?5m) is required for maximal production of the hydroxyl radical in microsomal lipid peroxidation during NADPH oxidation. High concentrations of Fe2+-EDTA complex equimolar in iron and chelator do not inhibit the production of the hydroxyl radical. The production of the hydroxyl radical in liver microsomes is also promoted by high salt concentrations. Evidence is also presented that OH radical production in microsomes during induced lipid peroxidation occurs primarily via the classic Fenton reaction.  相似文献   

19.
The hydroxyl radical-mediated oxidation of 5,5-dimethyl-1-pyrroline N-oxide, benzene, ketomethiolbutyric acid, deoxyribose, and ethanol, as well as superoxide anion and hydrogen peroxide formation was quantitated in reconstituted membrane vesicle systems containing purified rabbit liver microsomal NADPH-cytochrome P-450 reductase and cytochromes P-450 LM2, P-450 LMeb , or P-450 LM4, and in vesicle systems devoid of cytochrome P-450. The presence of cytochrome P-450 in the membranes resulted in 4-8-fold higher rates of O-2, H2O2, and hydroxyl radical production, indicating that the oxycytochrome P-450 complex constitutes the major source for superoxide anions liberated in the system, giving as a consequence hydrogen peroxide and also, subsequently, hydroxyl radicals formed in an iron-catalyzed Haber-Weiss reaction. Depletion of contaminating iron in the incubation systems resulted in small or negligible rates of cytochrome P-450-dependent ethanol oxidation. However, small amounts (1 microM) of chelated iron (e.g. Fe3+-EDTA) enhanced ethanol oxidation specifically when membranes containing the ethanol and benzene-inducible form of cytochrome P-450 (cytochrome P-450 LMeb ) were used. Introduction of the Fe-EDTA complex into P-450 LMeb -containing incubation systems caused a decrease in hydrogen peroxide formation and a concomitant 6-fold increase in acetaldehyde production; consequently, the rate of NADPH consumption was not affected. In iron-depleted systems containing cytochrome P-450 LM2 or cytochrome P-450 LMeb , an appropriate stoichiometry was attained between the NADPH consumed and the sum of hydrogen peroxide and acetaldehyde produced. Horseradish peroxidase and scavengers of hydroxyl radicals inhibited the cytochrome P-450 LMeb -dependent ethanol oxidation both in the presence and in the absence of Fe-EDTA. The results are not consistent with a specific mechanism for cytochrome P-450-dependent ethanol oxidation and indicate that hydroxyl radicals, formed in an iron-catalyzed Haber-Weiss reaction and in a Fenton reaction, constitute the active oxygen species. Cytochrome P-450-dependent ethanol oxidation under in vivo conditions would, according to this concept, require the presence of non-heme iron and endogenous iron chelators.  相似文献   

20.
Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号