首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ADP/ATP carrier (AAC) from yeast mitochondria has been reconstituted in phospholipid vesicles essentially according to the procedure described for the reconstitution of AAC from bovine heart mitochondria (Kr?mer and Heberger (1986) Biochim. Biophys. Acta, 863, 289-296). Liposomes were prepared from the mixed micelles of dodecyl octaoxyethylene ether (C12E8)-solubilized protein and egg yolk phosphatidylcholine by removing the detergent with Amberlite treatment. The micelles were treated with Amberlite either by repeatedly passing through small columns filled with Amberlite XAD-2 beads or by stepwise addition of Amberlite beads to the micelles. All the important variables of the reconstitution components were kept at optimal level and the liposomes obtained by both the methods of Amberlite treatment were analysed for (3H)CAT binding, orientation of AAC and nucleotide exchange activity. Reconstituted AAC showed 80% right side out orientation in the liposomes prepared by either procedure. Lipsomes prepared by the Amberlite column procedure exhibited higher CAT binding but lower ADP exchange activity. Liposome preparation by the stepwise addition of Amberlite is suggested to be the method of choice for functional reconstitution of yeast AAC in view of the higher nucleotide transport activity associated with the liposomes prepared by this method.  相似文献   

2.
Solubilized Ehrlich cell plasma membrane proteins were incorporated into lipid vesicles in the presence of added phospholipid, using Sephadex G-50 chromatography combined with a freeze-thaw step. Liposomes formed in K+ exhibited high levels of Na+-dependent, alpha-aminoisobutyric acid uptake which was electrogenic and inhibited by other amino acids. The transport activity reconstituted was similar to that observed in native plasma membrane vesicles. In addition to transport by system A, leucine exchange activity (system L), Na+-dependent serine exchange activity (system ASC), and stereospecific glucose transport activity were also reconstituted. The latter was inhibited by D-glucose, D-galactose, cytochalasin B, and mercuric chloride. The medium used for reconstitution was critical for the recovery of Na+-dependent amino acid transport. The use of Na+ in the reconstitution procedure led to formation of liposomes which displayed little Na+-dependent and gradient-stimulated amino acid uptake. In contrast, all transport activities studied were efficiently reconstituted in K+ medium.  相似文献   

3.
Acetyl phosphatidylethanolamine was compared with phosphatidylethanolamine in the reconstitution of several biological membrane activities with the following results. 1. The proton pump reconstituted with the purple membrane of Halobacterium halobium and acetyl phosphatidylethanolamine was quite active. However, some differences in the kinetic properties, particularly in the decay rate, were noted between vesicles reconsituted with phosphatidylethanolamine and acetyl phosphatidylethanolamine. 2. Acetyl phosphatidylethanolamine could not replace phosphatidylethanolamine in the reconstitution of a Ca-2 plus pump with ATPase isolated from sacoplasmic reticulum. However, inclusion of suitable amounts of stearylamine or oleylamine during reconstitution yielded acetyl phosphatidylethanolamine vesicles with Ca-2 plus translocation activity comparable to that of phosphatidylethanolamine vesicles. 3. A mixture of acetyl phosphatidylethanolamine and stearylamine or oleylamine substituted for phosphatidylethanolamine in the reconstitution of mitochondrial hydrophobic proteins to form vesicles that catalyze 32-Pi-ATP exchange. Since phosphatidylcholine is also required in this system, these findings point to two functions of phosphatidylethanolamine, one related to the specific properties of its amino group, the other to a structural role of its small polar head group. A hydrophobic alkylamine can fullfill the first function, acetyl phosphatidylethanolamine the second. 4. The importance of the charge was also observed in experiments with the reconstituted rutamycin-sensitive ATPase of mitochondria. After depletion of phospholipids from the hydrophobic proteins, ATPase activity and rutamycin sensitivity were restored only if a phospholipid as well as the appropriate charge were present.  相似文献   

4.
A method has been developed for the functional reconstitution of membrane proteins in phospholipid vesicles. This method is an extension of a previously published procedure (Ueno, M., Tanford, C. and Reynolds, A. (1984) Biochemistry 23, 3070-3076) for the formation of unilamellar vesicles from mixed micelles of egg phosphatidylcholine and dodecyl octaoxyethylene ether. Mixed micelles are formed from detergent-solubilized protein and egg-yolk phospholipid vesicles. These micelles are subjected to repeated passage through small columns filled with Amberlite XAD-2 beads. Several carrier proteins from the inner mitochondrial membrane have been reconstituted in this way; experimental data are shown for the aspartate/glutamate carrier and the ADP/ATP carrier. Certain parameters proved to be important for optimal efficiency of reconstitution: the ratio of detergent/phospholipid in the mixed micelles, the concentration of phospholipid during the hydrophobic chromatography, the ratio of phospholipid/protein, (d) the ratio of detergent/Amberlite XAD 2 beads, the number of column passages, and the type of detergent. After optimization of these parameters, phospholipid vesicles with a diameter of about 150 nm were obtained. The main advantage of this procedure, however, lies in the fact that high amounts of membrane protein can be incorporated into the phospholipid vesicles, i.e. up to 15% (w/w).  相似文献   

5.
Synaptic membranes from rat spinal cord were solubilized in the presence of 2% sodium cholate, phospholipids and 15% ammonium sulphate. The soluble extract was incorporated into liposomes consisting of asolectin and crude rat brain lipids. Reconstitution of the functional transporter protein was achieved by removal of detergent by gel filtration. Several parameters proved to be important for optimal reconstitution efficiency: (a) the lipid composition of the liposomes, (b) the type of detergent, and (c) the phospholipid/protein and detergent/protein ratio during reconstitution. In the reconstituted system, the transport of glycine showed a specific activity about twice that of native vesicles. The ionic dependence of the transport, the inhibitory effect of nigericin in the presence of external sodium and the stimulatory effect of valinomycin in the presence of internal potassium on glycine transport were preserved and more clearly observed in the reconstituted system. These results indicate that, in this preparation, the glycine transporter protein retains the same features displayed in the synaptic plasma membrane vesicles, namely dependence on sodium and chloride, electrogenicity and inhibitor sensitivity.  相似文献   

6.
The major nucleoside transporter of the human T leukemia cell line CEM has been identified by photoaffinity labeling with the transport inhibitor nitrobenzylmercaptopurine riboside (NBMPR). The photolabeled protein migrates on SDS-PAGE gels as a broad band with a mean apparent molecular weight (75,000 +/- 3000) significantly higher than that reported for the nucleoside transporter in human erythrocytes (55,000) (Young et al. (1983) J. Biol. Chem. 258, 2202-2208). However, after treatment with endoglycosidase F to remove carbohydrate, the NBMPR-binding protein in CEM cells migrates as a sharp peak with an apparent molecular weight (47,000 +/- 3000) identical to that reported for the deglycosylated protein in human erythrocytes (Kwong et al. (1986) Biochem. J. 240, 349-356). It therefore appears that the difference in the apparent molecular weight of the NBMPR-sensitive nucleoside transporter between the CEM cell line and human erythrocytes is a result of differences in glycosylation. The NBMPR-binding protein from CEM cells has been solubilized with 1% octyl glucoside and reconstituted into phospholipid vesicles by a freeze-thaw sonication technique. Optimal reconstitution of uridine transport activity was achieved using a sonication interval of 5 to 10 s and lipid to protein ratios of 60:1 or greater. Under these conditions transport activity in the reconstituted vesicles was proportional to the protein concentration and was inhibited by NBMPR. Omission of lipid or protein, or substitution of a protein extract prepared from a nucleoside transport deficient mutant of the CEM cell line resulted in vesicles with no uridine transport activity. The initial rate of uridine transport, in the vesicles prepared with CEM protein, was saturable with a Km of 103 +/- 11 microM and was inhibited by adenosine, thymidine and cytidine. The Km for uridine and the potency of the other nucleosides as inhibitors of uridine transport (adenosine greater than thymidine greater than cytidine) were similar to intact cells. Thus, although the nucleoside transporter of CEM cells has a higher molecular weight than the human erythrocyte transporter, it exhibits typical NBMPR-sensitive nucleoside transport activity both in the intact cell and when reconstituted into phospholipid vesicles.  相似文献   

7.
A procedure is described for the synthetic incorporation into membrane proteins of the non-natural amino acid TOAC (2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxylic acid), which is coupled rigidly to the alpha-carbon, providing direct detection of peptide backbone dynamics by electron paramagnetic resonance (EPR). Also included is a protocol for the functional reconstitution of the spin-labeled protein in lipid vesicles. This protocol can be completed in 17 d.  相似文献   

8.
The two major membrane glycoproteins of human red cells, glycophorin and band 3, the anion exchange protein, were isolated from cells exofacially labeled with fluorescein and reconstituted into vesicles with defined transmembrane disposition. Uniform orientation of polypeptides was accomplished by two procedures: Vesicles with single protein units were obtained by a one-step dilution of a protein/detergent suspension with a vast excess of phospholipid. Vesicles with uniform orientation of protein were selected by affinity chromatography on derivatized Sepharoses (organomercurial, wheat germ agglutinin, aminoethyl or diethylaminoethyl). Vesicles with multiple protein units with uniform orientation were generated by vectorial immobilization of detergent solubilized proteins on the above affinity matrices and in situ formation of proteoliposomes by detergent substitution for phospholipid. The proteoliposomes were released from the column by addition of excess free ligand. The orientation of band 3 and glycophorin in the reconstituted vesicles was first assessed by immunofluorescence quenching, using anti-fluorescein antibodies, to quantitatively quench fluorescein residues exposed on the outer surface of vesicles. Further assessment was achieved by chromatographing the vesicles through various affinity and ionic matrices. Vesicle populations of higher than 90% homogeneity in protein orientation (right-side-out or inside-out) were obtained with both procedures. The above methods provide a convenient experimental tool for the oriented reconstitution of proteins and the evaluation of their transmembrane disposition.  相似文献   

9.
A new method of membrane reconstitution was developed by fusion of channel protein containing vesicles with planar bilayer membranes. The fusion process only occurred below and near the phase transition temperature of the lipid used. We obtained the following results: 1. Our system is solvent-free and vesicles do not come into contact with the air/water interface. This obviates a possible denaturation of hydrophobic proteins. 2. Channel forming proteins and protein complexes, respectively, are active in a frozen lipid matrix. 3. We detected an unknown channel in cilia fragments. 4. Purified acetylcholine receptors form fluctuating channels in a membrane consisting of a pure synthetic lecithin (two component system).  相似文献   

10.
A new method of membrane reconstitution was developed by fusion of channel protein containing vesicles with planar bilayer membranes. The fusion process only occurred below and near the phase transition temperature of the lipid used. We obtained the following results: 1. Our system is solvent-free and vesicles do not come into contact with the air/water interface. This obviates a possible denaturation of hydrophobic proteins. 2. Channel forming proteins and protein complexes, respectively, are active in a frozen lipid matrix. 3. We detected an unknown channel in cilia fragments. 4. Purified acetylcholine receptors form fluctuating channels in a membrane consisting of a pure synthetic lecithin (two component system).  相似文献   

11.
1. A simple and rapid method for the reconstitution of Na+-dependent neutral amino acid transport activity from bovine renal brush border membranes is described. 2. The neutral detergent decanoyl-N-methylglucamide ('MEGA-10') was employed to solubilize the membrane protein. This obviated the necessity for a prolonged dialysis step. 3. The properties of amino acid transport in these vesicles were similar to those observed in native membranes. 4. This should be a useful procedure in the eventual identification and isolation of amino acid transport proteins.  相似文献   

12.
A rapid method for reconstitution of bacterial membrane proteins   总被引:2,自引:0,他引:2  
We have devised a simple method for the reconstitution of bacterial membrane proteins directly from small (1-20 ml) volumes of cell culture, thus eliminating the preparation of membrane vesicles. Cells are subjected to simultaneous lysozyme digestion and osmotic lysis, and after brief centrifugation ghosts are solubilized in 1.2% octyl-beta-D-glucopyranoside (octylglucoside) in the presence of added carrier lipid and an osmolyte. Aliquots of the clarified supernatant are suitable for reconstitution, as documented by using extracts from three different Gram-negative cells to recover both inorganic phosphate (Pi)-linked antiport and oxalate:formate exchange activities in proteoliposomes. These proteoliposomes are physically stable, non-leaky and can sustain a membrane potential and, because functional porins do not reconstitute, the artificial system has transport characteristics similar to those found when proteoliposomes are obtained using standard methods. This method should become an important tool for the screening and characterization of large numbers of strains, both wild-type and mutant.  相似文献   

13.
A rapid method for the functional reconstruction of amino acid transport from liver plasma-membrane vesicles using the neutral detergent decanoyl-N-glucamide ('MEGA-10') is described. The method is a modification of that previously employed in this laboratory for reconstitution of amino acid transport systems from kidney brush-border membranes [Lynch & McGivan (1987) Biochem. J. 244, 503-508]. The transport activities termed 'System A', 'System N', and 'System L' are all reconstituted. The reconstitution procedure is rapid and efficient and is suitable as an assay for transport activity in studies involving membrane fractionation. By using this reconstitution procedure, System A transport activity was partially purified by lectin-affinity chromatography.  相似文献   

14.
Solubilization and reconstitution of the cardiac sarcolemmal Na+/Ca2+ exchanger by use of the anionic detergent cholate and its application for reconstitution of the exchanger following solubilization with zwitterionic or nonionic detergents is described. Solubilization and reconstitution with cholate provided a 32.6-fold enrichment of Na+/Ca2+ exchange activity over sarcolemmal vesicles (5.2 to 170 nmol/mg/s) with 202% recovery of total activity. In combination with asolectin, the cholate dilution technique (H. Miyamoto and E. Racker, J. Biol. Chem. 255, 2656, 1980) offers a rapid and simple means for reconstitution and provides good recovery of total and specific Na+/Ca2+ exchange activity. However, the use of anionic detergents for solubilization precludes the use of certain chromatographic procedures for protein purification. Conversely, nonionic and zwitterionic detergents permit effective use of available chromatographic techniques, but can be troublesome during reconstitution. We have combined the advantages of solubilization with nonionic and zwitterionic detergents with the advantages of reconstitution by cholate dilution. Reconstitution of the exchanger, after solubilization with 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate (Chaps) or n-octyl-beta-D-glucoside, was accomplished by the addition of a cholate/asolectin medium followed by dilution. Na+/Ca2+ exchange activity was enriched 30.7-fold with 196% recovery with Chaps and 34.1-fold with 204% recovery with n-octyl-beta-D-glucoside. The presence of Chaps was found to shift the optimal asolectin concentration for reconstitution from 15 mg/ml (cholate alone) to 25 mg/ml. In addition, pelleting of proteoliposomes subsequent to reconstitution resulted in greatest recovery of total activity when volumes were kept below 1.0 ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The role of lipids in the interaction of the beta-adrenergic receptor (R) with the regulatory protein (Gs) was investigated. Solubilized preparations of R and of Gs from turkey erythrocytes were delipidated by gel filtration. They were subsequently combined and reconstituted by the addition of various lipids. When reconstitution was carried out in the presence of soybean lipids, Gs could be fully activated via R by addition of hormone plus GTP gamma S. In contrast, purified phospholipids or a phospholipid fraction from soybean failed to produce an active system. Fractionation of soybean lipids revealed that acetone-soluble neutral lipids are essential for the reconstitution of a hormone responsive system. The acetone fraction could be replaced by specific neutral lipids such as alpha-tocopherol or cholesteryl arachidonate while a mixture of phosphatidylethanolamine, -choline and -serine satisfied the phospholipid requirement of the system.  相似文献   

16.
The reconstitution of integral proteins into artificial lipid vesicles is largely prompted by the complexity of most biological membranes and the inherent difficulty of studying individual components in situ. Ideally, therefore, the reconstituted system should consist of a single protein in a lipid matrix which mimics the native membrane in all but its diversity. While such an approach allows individual components of a complex system to be studied in isolation it should also be sufficiently versatile to permit the generation of increasingly sophisticated multicomponent models. From the considerable number of reconstitution techniques which have been developed I have tried in this review to identify those characteristics of a particular system which maximise both the information it can provide and its versatility.  相似文献   

17.
A one-step purification method for halorhodopsin was developed. Functional proteoliposomes were prepared from this preparation using cholate, which is removed by dialysis in the presence of asolectin or the polar halobacterial lipids. Light-induced outward directed transport of chloride by halorhodopsin was followed by measuring passive proton efflux in the presence of uncoupler; initial rates and extents amounted to significant fractions of values obtained for halorhodopsin-containing cell envelope vesicles. The transport activity was much higher when cholate rather than octyl glucoside was used in the reconstitution. Since CD spectra in cholate but not in octyl glucoside showed band-splitting in the visible region, suggestive of exciton interaction between halorhodopsin monomers, the reconstitution may depend on an aggregate state of the halorhodopsin. The rate constants for three thermal steps in the halorhodopsin photocycle were greatly reduced in the detergent-solubilized samples, but they increased in the proteoliposomes to values similar to those for halorhodopsin in cell envelope vesicles. Thus, the reconstitution yields halorhodopsin with both photochemical and transport activities restored. Freeze-fracture electron micrographs of the proteoliposomes showed unilammellar liposomes with numerous particles of 100-150 A diameter at the fracture faces. These should correspond to halorhodopsin aggregates, formed in the bilayer in an apparently concentration-dependent manner.  相似文献   

18.
Meningococcal and gonococcal outer membrane proteins were reconstituted into liposomes using detergent-mediated dialysis. The detergents octyl glucopyranoside (OGP), sodium cholate and Empigen BB were compared with respect to efficiency of detergent removal and protein incorporation. The rate of OGP removal was greater than for cholate during dialysis. Isopycnic density gradient centrifugation studies showed that liposomes were not formed and hence no protein incorporation occurred during dialysis from an Empigen BB containing reconstitution mixture. Cholate-mediated reconstitution yielded proteoliposomes with only 75% of the protein associated with the vesicles whereas all of the protein was reconstituted into the lipid bilayer during OGP-mediated reconstitution. Essentially complete protein incorporation was achieved with an initial protein-to-lipid ratio of 0.01:1 (w/w) in the reconstitution mixture; however, at higher initial protein-to-lipid ratios (0.02:1) only 75% protein incorporation was achieved. Reconstituted proteoliposomes were observed as large (>300 nm), multilamellar structures using cryo-electron microscopy. Size reduction of these proteoliposomes by extrusion did not result in significant loss of protein or lipid. Extruded proteoliposomes were unilamellar vesicles with mean diameter of about 100 nm.  相似文献   

19.
We have established an experimental system for the functional analysis of thylakoidal TatB, a component of the membrane-integral TatBC receptor complex of the thylakoidal Twin-arginine protein transport (Tat) machinery. For this purpose, the intrinsic TatB activity of isolated pea thylakoids was inhibited by affinity-purified antibodies and substituted by supplementing the assays with TatB protein either obtained by in vitro translation or purified after heterologous expression in E. coli. Tat transport activity of such reconstituted thylakoids, which was analysed with the authentic Tat substrate pOEC16, reached routinely 20–25% of the activity of mock-treated thylakoid vesicles analysed in parallel. In contrast, supplementation of the assays with the purified antigen comprising all but the N-terminal transmembrane helix of thylakoidal TatB did not result in Tat transport reconstitution which confirms that transport relies strictly on the activity of the TatB protein added and is not due to restoration of the intrinsic TatB activity by antibody release. Unexpectedly, even a mutated TatB protein (TatB,E10C) assumed to be incapable of assembling into the TatBC receptor complex showed low but considerable transport reconstitution underlining the sensitivity of the approach and its suitability for further functional analyses of protein variants. Finally, quantification of TatB demand suggests that TatA and TatB are required in approximately equimolar amounts to achieve Tat-dependent thylakoid transport.  相似文献   

20.
In this protocol, we describe a procedure for incorporating ATP-binding cassette (ABC) transporters into large unilamellar vesicles (LUVs) and assays to determine ligand binding and solute translocation by these membrane-reconstituted systems. The reconstitution technique as described has been optimized for ABC transporters but can be readily adapted for other types of transport systems. Purified transporters are inserted into detergent-destabilized preformed liposomes and detergent is subsequently removed by adsorption onto polystyrene beads. Next, Mg-ATP or an ATP-regenerating system is incorporated into the vesicle lumen by one or more cycles of freezing-thawing, followed by extrusion through polycarbonate filters to obtain unilamellar vesicles. Binding and translocation of substrates are measured using isotope-labeled ligands and rapid filtration to separate the proteoliposomes from the surrounding medium. Quantitative information is obtained about dissociation constants (K(d)) for ligand binding, number of binding-sites, transport affinities (K(m)), rates of transport, and the activities of transporter molecules with opposite orientations in the membrane. The full protocol can be completed within 4-5 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号