首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MDA-468 human breast cancer cell line has an amplified epidermal growth factor (EGF) receptor gene (20 x) and correspondingly overexpresses the EGF receptor. Since this cell line is growth inhibited by supra-physiological levels of EGF in tissue culture, it has been possible to select variant cells which have lost the chromosome bearing the amplified EGF receptor domain and which are capable of growing in high levels of EGF. One such cell line (MDA-468-S4) shows an absolute requirement for EGF for growth in anchorage-independent tissue culture conditions. We have utilized MDA-468 and MDA-468-S4 to examine the intracellular transduction of EGF signals leading to growth inhibition and proliferation, respectively. We report that in anchorage-independent conditions, pertussis toxin can abrogate both the EGF-dependent growth inhibition in MDA-468 cells and the EGF-dependent cell proliferation in MDA-468-S4 cells. This inhibition is paralleled by the ADP-ribosylation of an endogenous 41,000-dalton membrane protein in both MDA-468 and MDA-468-S4 cells. In contrast, the toxin does not prevent the transient, augmented expression of c-myc and c-fos mRNA seen in response to EGF in both cell types. These data suggest 1) the notion of more than one simultaneous, parallel, intracellular EGF-dependent signal transduction pathway and 2) G-protein involvement in at least one pathway mandatory for the growth modulating responses to EGF in anchorage-independent conditions, but distinct from that inducing c-myc and c-fos mRNA expression.  相似文献   

2.
Interaction of some mitogenic lectins and growth factors with the cell surface leads to activation of the Na+/H+ antiport and a resultant cytoplasmic alkalinization. Because amiloride inhibits both Na+/H+ exchange and cell proliferation, it has been hypothesized that activation of the antiport is an obligatory requirement and may, perhaps, be the "trigger" for proliferation. However, concentrations of amiloride which inhibit the antiport also inhibit several other intracellular processes, including protein synthesis and phosphorylation. To determine whether activation of the Na+/H+ antiport is necessary for lectin-induced proliferation, we examined the inhibitory activity of a series of potent amiloride analogs by measuring [3H]thymidine incorporation, cell cycle progression, and induction of the interleukin 2 (IL 2) receptor on human lymphocytes. In medium containing bicarbonate, and at concentrations at least 10 times higher than required to inhibit the antiport, these drugs did not inhibit the proliferative response of human peripheral blood T cells to the mitogen phytohemagglutinin. The amiloride analogs also failed to inhibit induction of the IL 2 receptor. Similarly, with human thymocytes, the amiloride analogs did not inhibit the co-mitogenic effects of the lectins phytohemagglutinin and concanavalin A together with IL 2 or the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. This finding suggests that Na+/H+ exchange through the antiport is not an obligatory requirement for activation or proliferation of human lymphocytes or thymocytes.  相似文献   

3.
We studied the effects of epidermal growth factor (EGF), thyroid-stimulating hormone (TSH) and amiloride on cytoplasmic pH (pHi) in cultured porcine thyroid cells. We used 2',7'-bis(2-carboxyethyl)-5- (and 6-)carboxyfluorescein (BCECF), an internalized fluorescent pH indicator, to measure pHi. EGF stimulated thyroid cell alkalinization and proliferation, which were blocked by amiloride. EGF-stimulated thyroid cell alkalinization depended on extracellular Na+ concentrations. EGF stimulation resulted in an activation of Na+/H+ exchange, which alkalinized the cells. The results indicated that Na+/H+ exchange or cell alkalinization might function as a transmembrane signal transducer in the action of EGF. In the present system, TSH did not stimulate alkalinization or proliferation.  相似文献   

4.
In several cell types, proliferation initiated by growth factors is associated with a rapid increase in cytoplasmic pH (pHi). This cytoplasmic alkalinization is due to the activation of an amiloride-sensitive Na+/H+ antiport. It is unclear whether growth factor-induced activation of the antiport or the resultant increase in pHi is the trigger for proliferation, an obligatory requirement for proliferation, or simply an associated phenomenon. Interleukin 2 (IL 2) acts as a growth factor for mitogen or antigen-stimulated thymus-derived (T) lymphocytes. In this study, we established that IL 2 produces an increase in pHi and determined whether this increase in pHi plays a role in the proliferative response to IL 2. Monitoring pHi with an intracellularly trapped, pH-sensitive, fluorescent dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein, we demonstrated that IL 2 rapidly (less than 90 s) initiates an increase in pHi in IL 2-sensitive human and murine T cells. Because intracellular alkalinization requires extracellular Na+ and is amiloride-sensitive, it likely occurs through activation of the Na+/H+ antiport. Using partitioning of a weak acid, 5,5-dimethyl-2,4-oxazolidinedione, we confirmed that the IL 2-dependent increase in pHi is sustained for several hours and returns to near base-line levels by 18 h. We also investigated the consequence of preventing Na+/H+ exchange on the proliferative response induced by IL 2. IL 2-driven proliferation occurred in nominally bicarbonate-free medium in the presence of concentrations of amiloride analogs sufficient to inhibit the Na+/H+ antiport and prevent intracellular alkalinization. These data suggest that although the antiport is activated by binding of IL 2 to its receptor, intracellular alkalinization is not essential for IL 2-dependent proliferation. It seems unlikely that either cytoplasmic alkalinization or activation of the Na+/H+ antiport are triggers for T cell proliferation.  相似文献   

5.
The role of Na + transport systems in the mitogenic signal induced by growth factors was studied, and it was shown that two Na + transport systems contribute to the early increase in cytoplasmic Na + in response to serum growth factors, namely the amiloride-sensitive Na+/H+ antiport and the bumetanide-sensitive Na+/K+/Cl- cotransport. Bumetanide or amiloride, when added separately, inhibited part of the increase in cytoplasmic Na +, as a response to the addition of serum to quiescent BALB/c mouse 3T3 fibroblasts. Each drug also suppressed part of the stimulation of the ouabain-sensitive Rb + influx, which was controlled by intracellular Na +. However, when both drugs were added together with serum growth factors, a complete inhibition of the early increase in [Na +], and subsequently a complete blockage of Na+/K+ pump stimulation was obtained. Amiloride or bumetanide, when added separately, only partially inhibited DNA synthesis induced by serum, 24% and 8% respectively. However, when both drugs were added together, at the time of serum addition to the quiescent cells, cell entry into S-phase was completely inhibited. To investigate the mode of cell-cycle inhibition, analysis was done of the possible role of early Na + fluxes in the mitogenic signal transduced from cell membrane receptors to the nucleus. The effects of the two drugs amiloride and bumetanide on induction of three genes--c-fos, c-myc, and ornithin decarboxylase (ODC)--was measured during cell transition through the G1-phase. Amiloride and bumetanide, when added separately or in combination, did not inhibit the induction of c-fos, c-myc, and ODC mRNAs. These results suggest that stimulation of Na + fluxes by serum growth factors is essential for cell transition into the S-phase of cell cycle, but it plays no apparent role in the growth factor signal transduced from the cell surface to the interior of the cell, as manifested by c-fos, c-myc, and ODC genes induction.  相似文献   

6.
The effect of elevating cytoplasmic Ca2+ [( Ca2+]i) on the intracellular pH (pHi) of thymic lymphocytes was investigated. In Na+-containing media, treatment of the cells with ionomycin, a divalent cation ionophore, induced a moderate cytoplasmic alkalinization. In the presence of amiloride or in Na+-free media, an acidification was observed. This acidification is at least partly due to H+ (equivalent) uptake in response to membrane hyperpolarization since: it was enhanced by pretreatment with conductive protonophores, it could be mimicked by valinomycin, and it was decreased by depolarization with K+ or gramicidin. In addition, activation of metabolic H+ production also contributes to the acidification. The alkalinization is due to Na+/H+ exchange inasmuch as it is Na+ dependent, amiloride sensitive, and accompanied by H+ efflux and net Na+ gain. A shift in the pHi dependence underlies the activation of the antiport. The effect of [Ca2+]i on Na+/H+ exchange was not associated with redistribution of protein kinase C and was also observed in cells previously depleted of this enzyme. Treatment with ionomycin induced significant cell shrinking. Prevention of shrinking largely eliminated the activation of the antiport. Moreover, a comparable shrinking produced by hypertonic media also activated the antiport. It is concluded that stimulation of Na+/H+ exchange by elevation of [Ca2+]i is due, at least in part, to cell shrinking and does not require stimulation of protein kinase C.  相似文献   

7.
It has been suggested that an intracellular alkalinization, resulting from stimulation of Na+/H+ exchange, is a necessary step and perhaps the signal leading to cellular proliferation in cells stimulated by mitogens. This hypothesis was tested by measuring the early stages of the proliferative cascade in cells where antiport activity was precluded by omission of Na+ or by the addition of potent amiloride analogs. To circumvent possible nonspecific effects due to long incubations under these conditions, an early response to mitogens, the increased level of c-fos mRNA, was monitored. In rat thymic lymphocytes, the increase in the level of c-fos RNA induced by the combination of 12-O-tetradecanoylphorbol 13-acetate and ionomycin was unaffected by inhibition of the antiport with 5-(N-ethyl-N-propyl)amiloride. Increased c-fos RNA was also observed in the absence of Na+ and when alkalinization was prevented by means of nigericin. Similar results were obtained with phytohemagglutinin-stimulated human T lymphocytes. Moreover, although the lectin stimulated the antiport in these cells, an alkalinization was not observed, due to the concomitant occurrence of an acidifying process. It was concluded that the stimulation of the Na+/H+ antiport that accompanies the addition of mitogens is neither sufficient nor necessary for the initiation of cellular proliferation.  相似文献   

8.
The effects of a phorol ester and a mitogenic lectin on the intracellular pH (pHi) of human T lymphocytes was investigated. In contrast to the cytoplasmic alkalinization induced by 12-0-tetradecanoylphorbol-13-acetate, an acidification was recorded in cells treated with phytohemagglutinin. This decrease in pHi was magnified in Na+-free medium or in the presence of amiloride analogues, suggesting that activation of Na+/H+ exchange partially counteracts the phytohemagglutinin-induced acidification. The decrease in pHi was dependent on a sustained increase in cytosolic free Ca2+ and could be mimicked by addition of the divalent cation ionophore, ionomycin. The elevation of cytosolic free Ca2+ leads to metabolic H+ (equivalent) generation with consequent cytoplasmic acidification, which in human T cells predominates over the concurrent activation of the Na+/H+ antiport. These findings argue against the notion that activation of Na+/H+ exchange is a signal for the initiation of proliferation.  相似文献   

9.
Activation of sodium/proton (Na+/H+) antiport activity has been shown to occur as an early event in mitogenesis. Because amiloride inhibits Na+/H+ antiport activity, it is hypothesized that mitogenesis may be inhibited by amiloride. In this work, we examined the effect of amiloride on DNA synthesis as measured by [3H]thymidine uptake and immunoglobulin (Ig) production as measured by an ELISA system in human peripheral blood mononuclear cells (PBM). Amiloride at 100 microM concentration inhibited irradiated Raji cell (*R)-activated and phytohemagglutinin-P (PHA-P)-stimulated DNA synthesis by 50 +/- 11% and 72 +/- 12%, respectively. IgG production was inhibited by 71% at 100 microM amiloride concentration in *R-activated PBM. This concentration of amiloride inhibited Na+/H+ antiport activity by 92%. Because amiloride is known to inhibit other pre-replicative cellular functions such as protein synthesis, we used an amiloride analogue, dimethylamiloride, which inhibited Na+/H+ antiport activity by 90% at a concentration of 1 microM without inhibition of PBM Ig or DNA synthesis. Furthermore, neither PHA-P nor *R-stimulated PBM demonstrated an intracellular alkalinization even after 6 hr of stimulation. Similarly, T cell-enriched or B cell-enriched populations did not show intracellular alkalinization after PHA-P or *R activation. Thus, it appears that Na+/H+ antiport activation is not an early event in PBM mitogenesis. The inhibition of mitogenesis by amiloride may be due to abrogation of premitotic events such as protein synthesis.  相似文献   

10.
The mechanisms underlying cytoplasmic pH (pHi) regulation in elicited rat peritoneal macrophages were investigated by electronic sizing and fluorescence determinations. Acid-loaded cells rapidly regained normal pHi by means of an amiloride-sensitive Na+/H+ exchange. When stimulated by 12-O-tetradecanoyl phorbol 13-acetate, macrophages displayed a biphasic pHi change: a marginal acidification followed by an alkalinization. The latter results from activation of Na+/H+ exchange, since it is Na+-dependent and prevented by amiloride. When the antiport is inhibited, the full magnitude of the initial acidification can be appreciated. This acidification is independent of the nature of the ionic composition of the medium and probably reflects accumulation of protons generated during the metabolic burst. Under physiological conditions, these protons are rapidly extruded by the Na+/H+ antiport.  相似文献   

11.
This study investigated fluctuations of cytosolic pH (pHi) of cultured rat vascular smooth muscle cells (VSMCs) in reaction to metabolic alterations induced by angiotensin II (AII). Serially passed VSMCs from Wistar rat aortae were grown on coverslips and loaded with the pH-sensitive fluorescent indicator 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein. A biphasic reaction was seen after exposure of these cells to AII (1 nM to 1 microM); an initial and relatively brief phase of acidification was followed by sustained alkalinization. The rate of acidification and magnitude of alkalinization were dose-dependent. This biphasic effect of AII was also demonstrated in Ca2+-free medium and was mimicked by subjecting VSMCs to the calcium ionophore A23187 (5 microM) in Ca2+-containing medium but not in Ca2+-free medium. Verapamil (10 microM) almost entirely eliminated the AII-induced acidification, whereas amiloride analogues 5-(N-methyl-N-isobutyl)amiloride and 5-(N-ethyl-N-isopropyl)amiloride (100 microM) as well as Na+-deficient medium abolished the subsequent (alkalinization) phase produced by the hormone. Activation of the Na+/H+ antiport by subjecting VSMCs to phorbol 12-myristate 13-acetate (100 nM) prevented a subsequent effect of AII on the pHi profile. This resistance to a further action of the hormone was not mediated via cytoplasmic alkalinization. AII produced a dramatic redistribution in the cellular compartments of 45Ca2+ associated with accelerated 45Ca2+ washout. These findings suggest that the AII-induced acidification phase may relate to activation of the Ca2+ pump (Ca2+/H+ exchange) and that this process can take place in the presence and absence of extracellular Ca2+. The alkalinization phase is the consequence of stimulation of the Na+/H+ antiport, which in cultured VSMCs can be activated by a rise in cytosolic free Ca2+ as well as other mechanisms.  相似文献   

12.
Mitogen-induced intracellular alkalinization mediated by activation of a Na+/H+ antiporter is a common feature of eukaryotic cells stimulated to divide. A Chinese hamster fibroblast mutant (PS120) lacking Na+/H+ antiport activity (Pouysségur et al., Proc natl acad sci US 81 (1984) 4833) [42] possesses an intracellular pH (pHi) 0.2-0.3 units lower than the wild type (CCL39) and requires a more alkaline pHout (pHo) for growth. Here, we show that serum-stimulated ribosomal protein S6 phosphorylation, protein synthesis activation and DNA synthesis re-initiation are pH-regulated events that display a similar threshold pHo value (6.60) in CCL39 cells. pH-Dependencies for initiation of all three events are shifted toward higher pHo values in the mutant PS120, indicating that growth factor-induced alkalinization has a permissive effect on the pleiotypic response. However, cytoplasmic alkalinization per se is insufficient to trigger S6 phosphorylation, polysome formation, and subsequent DNA synthesis. Transient exposure to a non-permissive pHo (6.5) inhibits both the rate of leucine incorporation into proteins and the progression through the G1 phase of the cell cycle. In contrast, cells committed to DNA synthesis are unaltered by the acidic pHo. These observations suggest that pHi by controlling the rate of protein synthesis play a determinant role in the control of cell division.  相似文献   

13.
The cytoplasmic pH of human neutrophils was determined fluorometrically using carboxylated fluorescein derivatives. When normal neutrophils were activated by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) in Na+-containing medium, the cytoplasmic pH initially decreased but then returned to near normal values. In Na+-free media or in Na+ medium containing amiloride, TPA induced a marked monophasic intracellular acidification. The cytoplasmic acidification is associated with net H+ equivalent efflux, suggesting metabolic acid generation. The metabolic pathways responsible for the acidification were investigated by comparing normal to chronic granulomatous disease neutrophils. These cells are unable to oxidize NADPH and generate superoxide. When treated with TPA in Na+-free or amiloride-containing media, chronic granulomatous disease cells did not display a cytoplasmic acidification. This suggests that in normal cells NADPH oxidation and/or the accompanying activation of the hexose monophosphate shunt are linked to the acidification. Unlike normal neutrophils, chronic granulomatous disease cells treated with TPA in Na+-containing medium displayed a significant cytoplasmic alkalinization. The alkalinization was Na+-dependent and amiloride-sensitive, indicating activation of Na+/H+ exchange. Thus, the Na+/H+ antiport, which can be indirectly stimulated by the metabolic cytoplasmic acidification, is also directly activated by the phorbol ester.  相似文献   

14.
We determined the effect of okadaic acid (OA), a potent phosphoprotein phosphatase inhibitor, on the intracellular pH (pHi) of rat thymic lymphocytes and human bladder carcinoma cells. OA induced a rapid and sustained cytosolic alkalinization. This pHi increase was Na(+)-dependent and was inhibited by 5,N-disubstituted analogs of amiloride, indicating mediation by the Na+/H+ antiport. As described for other stimulants, such as mitogens and hypertonic challenge, activation of the antiport by OA is attributable to an upward shift in its pHi dependence. Accordingly, the alkalinization produced by the phosphatase inhibitor was not additive with that induced osmotically. Activation of the antiport by OA was accompanied by a marked increase in phosphoprotein accumulation, revealing the presence of active protein kinases in otherwise unstimulated cells. We considered the possibility that phosphorylation of the antiport itself or of an ancillary protein is responsible for activation of Na+/H+ exchange. Consistent with this notion, the alkalinization induced by OA was absent in ATP depleted cells. More importantly, immunoprecipitation experiments demonstrated increased phosphorylation of the antiport following treatment with OA. We conclude that, upon inhibition of phosphoprotein phosphatase activity, constitutively active kinases induce the activation of Na+/H+ exchange, possibly by direct phosphorylation of the antiport.  相似文献   

15.
The Na+/H+ antiport is stimulated by 12-O-tetradecanoylphorbol-13, acetate (TPA) and other phorbol esters in rat thymic lymphocytes. Mediation by protein kinase C is suggested by three findings: (a) 1-oleoyl-2-acetylglycerol also activated the antiport; (b) trifluoperazine, an inhibitor of protein kinase C, blocked the stimulation of Na+/H+ exchange; and (c) activation of countertransport was accompanied by increased phosphorylation of specific membrane proteins. The Na+/H+ antiport is also activated by osmotic cell shrinking. The time course, extent, and reversibility of the osmotically induced and phorbol ester-induced responses are similar. Moreover, the responses are not additive and they are equally susceptible to inhibition by trifluoperazine, N-ethylmaleimide, and ATP depletion. The extensive analogies between the TPA and osmotically induced effects suggested a common underlying mechanism, possibly activation of a protein kinase. It is conceivable that osmotic shrinkage initiates the following sequence of events: stimulation of protein kinase(s) followed by activation of the Na+/H+ antiport, resulting in cytoplasmic alkalinization. The Na+ taken up through the antiport, together with the HCO3- and Cl- accumulated in the cells as a result of the cytoplasmic alkalinization, would be followed by osmotically obliged water. This series of events could underlie the phenomenon of regulatory volume increase.  相似文献   

16.
The fluorescence of 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) has been used to follow the Na+/H+ antiport activity of isolated heart mitochondria as a Na+-dependent extrusion of matrix H+. The antiport activity measured in this way shows a hyperbolic dependence on external Na+ or Li+ concentration when the external pH (pHo) is 7.2 or higher. The apparent Km for Na+ decreases with increasing pHo to a limit of 4.6 mM. The Ki for external H+ as a competitive inhibitor of Na+/H+ antiport averages 3.0 nM (pHo 8.6). The Vmax at 24 degrees C is 160 ng ion of H+ min-1 (mg of protein)-1 and does not vary with pHo. Li+ reacts with the antiporter with higher affinity, but much lower Vmax, and is a competitive inhibitor of Na+/H+ antiport. The rate of Na+/H+ antiport is optimal when the pHi is near 7.2. When pHo is maintained constant, Na+-dependent extrusion of matrix H+ shows a hyperbolic dependence on [H+]i with an apparent Km corresponding to a pHi of 6.8. The Na+/H+ antiport is inhibited by benzamil and by 5-N-substituted amiloride analogues with I50 values in the range from 50 to 100 microM. The pH profile for this inhibition seems consistent with the availability of a matrix binding site for the amiloride analogues. The mitochondrial Na+/H+ antiport resembles the antiport found in the plasma membrane of mammalian cells in that Na+, Li+, and external H+ appear to compete for a common external binding site and both exchanges are inhibited by amiloride analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Chinese hamster lung fibroblasts (CCl39) possess in their plasma membrane an amiloride-sensitive Na+/H+ antiport, activated by growth factors. Measurements of intracellular pH (pHi), using equilibrium distribution of benzoic acid, provide evidence for a major role of this antiport in 1) regulation of cytoplasmic pH, in response to an acute acid load or to varying external pH values, and 2) the increase in cytoplasmic pH (by 0.2-0.3 pH unit) upon addition of growth factors (alpha-thrombin and insulin) to G0/G1-arrested cells. Indeed, these two processes are Na+-dependent and amiloride-sensitive; furthermore, CCl39-derived mutant cells, lacking the Na+/H+ exchange activity, are greatly impaired in pHi regulation and present no cytoplasmic alkalinization upon growth factor addition. In wild type G0-arrested cells, the amplitude of the mitogen-induced alkalinization reflects directly the activity of the Na+/H+ antiport, and is tightly correlated with the magnitude of DNA synthesis stimulation. Therefore, we conclude that cytoplasmic pH, regulated by the Na+/H+ antiport, is of crucial importance in the mitogenic response.  相似文献   

18.
Phorbol-12,13-dibutyrate, epidermal growth factor, and insulin raised the intracellular pH ([pH]i), presumably through the activation of a Na+/H+ antiporter. Addition of amiloride or replacement of extra-cellular Na+ by choline which abolishes the cytoplasmic alkalinization prevented the stimulation of hexose transport by these agents. Furthermore, monensin, a Na+/H+ ionophore which increases the [pH]i, stimulated hexose transport. This stimulation was also prevented by the replacement of extra-cellular Na+ by choline. These observations suggest that stimulation of the Na+/H+ antiporter may have stimulated the increase in hexose transport.  相似文献   

19.
20.
Na+/H+ exchange activation by growth factors is proposed to be an important early signal for mitogenesis; however, little is known of its duration and requirement during later stages of the cell cycle. Macrophage-specific colony factor (CSF-1) rapidly activates murine bone marrow-derived macrophage Na+/H+ exchange, resulting in stimulation of Na+,K(+)-ATPase activity. The response to CSF-1 is maintained for at least 24 h. Inhibition of Na+/H+ exchange with 5-N,N-dimethylamiloride prevents CSF-1-stimulated DNA synthesis and cell growth. This is unlikely to be due to cytoplasmic acidosis, but more likely reflects a requirement for Na+/H+ exchange-mediated Na+ influx. DMA addition even up to 8 h after the growth factors suppresses S-phase progression. Na+/H+ exchange appears not to be involved in the induction of other early growth factor responses (c-fos and c-myc mRNA induction and general RNA and protein synthesis). We propose that growth factor-stimulated Na+/H+ exchange late in G1 of the cell cycle is required for S-phase progression but not for certain early growth factor responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号