首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
R N Frank  S M Buzney 《Biochemistry》1975,14(23):5110-5117
Partial separation of protein kinase activity from rhodopsin in isolated bovine retinal photoreceptor outer segments was accomplished by mild ultrasonic treatment followed by ultracentrifugation. Residual kinase activity in the rhodopsin-rich sediment was destroyed by chemical denaturation which did not affect the spectral properties of the rhodopsin. The retinal outer segment kinase was found to be specific for rhodopsin, since in these preparations it alone of several bovine protein kinases was capable of phosphorylating rhodopsin in the light. The phosphorylation reaction apparently requires a specific conformation of the rhodopsin molecule since it is abolished by heat denaturation of rhodopsin, and it is greatly reduced or abolished by treatment of the visual pigment protein with potassium alum after the rhodopsin has been "bleached" by light. When kinase and rhodopsin or opsin fractions were prepared from dark-adapted and bleached outer segments and the resultant fractions were mixed in various combinations of bleached and unbleached preparations, the observed pattern of light-activated phosphorylation was consistent only with the interpretation that a conformational change in the rhodopsin molecule in the light exposes a site on the visual pigment protein to the kinase and ATP. These results rule out the possibility of a direct or indirect (rhodopsin-mediated) light activation of the kinase. Finally, phosphorylation of retinal outer segment protein in monochromatic lights of various wavelengths followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that both rhodopsin and the higher molecular weight visual pigment protein reported by several laboratories have the same action spectrum for phosphorylation. This result is consistent with the suggestion that the higher molecular weight species is a rhodopsin dimer.  相似文献   

3.
Visual arrestin plays an important role in regulating light responsiveness via its ability to specifically bind to the phosphorylated and light-activated form of rhodopsin. To further characterize rhodopsin/arrestin interactions we have utilized a rabbit reticulocyte lysate translation system to synthesize bovine visual arrestin. The translated arrestin (404 amino acids) was demonstrated to be fully functional in terms of its ability to specifically recognize and bind to phosphorylated light-activated rhodopsin (P-Rh*). Competitive binding studies revealed that the in vitro synthesized arrestin and purified bovine visual arrestin had comparable affinities for P-Rh*. In an effort to assess the functional role of different regions of the arrestin molecule, two truncated arrestin mutants were produced by cutting within the open reading frame of the bovine arrestin cDNA with selective restriction enzymes. In vitro translation of the transcribed truncated mRNAs resulted in the production of arrestins truncated from the carboxyl terminus. The ability of each of the mutant arrestins to bind to dark (Rh), light-activated (Rh*), dark phosphorylated (P-Rh), and light-activated phosphorylated rhodopsin were then compared. Arrestin lacking 39 carboxyl-terminal residues binds specifically not only to P-Rh* but also to Rh* and P-Rh. This suggests that the carboxyl-terminal domain of arrestin plays an important regulatory role in ensuring strict arrestin binding selectivity to P-Rh*. Arrestin that has only the first 191 amino-terminal residues predominately discriminates the phosphorylation state of the rhodopsin; however, it also retains some binding specificity for the activation state. These results suggest that the amino-terminal half of arrestin contains key rhodopsin recognition sites responsible for interaction with both the phosphorylated and light-activated forms of rhodopsin.  相似文献   

4.
The carbohydrate content of bovine rhodopsin was investigated and found to be different from previously reported values. Rod outer segments were isolated from dark-adapted bovine retinas by sucrose flotation and purified by sucrose density contrifugation. Rhodopsin was extracted with detergents and purified by chromatographic procedures involving calcium phosphate/celite chromatography followed by affinity chromatograpy on concanavalin A-Sepharose (or in some cases, gel filtration on agarose). Purified preparations of rhodopsin had A278/A498 ratios of 1.6 to 2.0. After treatment of the rhodopsin with chloroform/methanol (2/1) to remove lipids and detergents, the carbohydrate content was measured by gas-liquid chromatography, colorimetric and enzymatic analyses, paper chromatography, and electrophoresis. Rhodopsin was found to have about 9 mol of mannose and 5 mol of glucosamine per mol of visual pigment. A molar ratio of mannose/glucosamine of about 2 was also found in samples of rhodopsin obtained from two other laboratories. The amino acid analysis was similar to previously published values.  相似文献   

5.
Photochemical studies were conducted on human rhodopsin at 20 degrees C to characterize the intermediates which precede the formation of metarhodopsin II, the trigger for the enzyme cascade mechanism of visual transduction. Human rhodopsin was prepared from eyes which had previously been used for corneal donations. Time resolved absorption spectra collected from 10(-8) to 10(-6) s after photolysis of human rhodopsin in detergent suspensions displayed biexponential decay kinetics. The apparent lifetimes obtained from the data are 65 +/- 20 and 292 +/- 25 ns, almost a factor of 2 slower than the corresponding rates in bovine rhodopsin. The spectra can be fit well using a model in which human bathorhodopsin decays toward equilibrium with a blue-shifted intermediate (BSI) which then decays to lumirhodopsin. Spectra and kinetic rate constants were determined for all these intermediates using a global analysis which showed that the spectra of the human intermediates are remarkably similar to bovine intermediates. Microscopic rate constants derived from this model are 7.4 x 10(6) s-1 for bathorhodopsin decay and 7.5 x 10(6) s-1 and 4.6 x 10(6) s-1 for the forward and reverse reactions of BSI, respectively. Decay of lumirhodopsin to later intermediates was studied from 10(-6) to 10(-1) s after photolysis of rhodopsin in human disk membrane suspensions. The human metarhodopsin I in equilibrium metarhodopsin II equilibrium appears to be more forward shifted than in comparable bovine studies.  相似文献   

6.
G-protein-coupled receptors (GPCRs) are involved in a vast variety of cellular signal transduction processes from visual, taste and odor perceptions to sensing the levels of many hormones and neurotransmitters. As a result of agonist-induced conformation changes, GPCRs become activated and catalyze nucleotide exchange within the G proteins, thus detecting and amplifying the signal. GPCRs share a common heptahelical transmembrane structure as well as many conserved key residues and regions. Rhodopsins are prototypical GPCRs that detect photons in retinal photoreceptor cells and trigger a phototransduction cascade that culminates in neuronal signaling. Biophysical and biochemical studies of rhodopsin activation, and the recent crystal structure determination of bovine rhodopsin, have provided new information that enables a more complete mechanism of vertebrate rhodopsin activation to be proposed. In many aspects, rhodopsin might provide a structural and functional template for other members of the GPCR family.  相似文献   

7.
We report a rapid and high-yield purification method of bovine retinal rhodopsin kinase. According to our method, 500 micrograms of rhodopsin kinase was purified from 100 bovine retinae within 12 h. Rhodopsin kinase bound to bleached rhodopsin was extracted effectively from rod outer segment membranes after regeneration of rhodopsin by the incubation with exogenous 11-cis-retinal. Subsequent DE52 column chromatography further purified the protein to homogeneity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified rhodopsin kinase had an apparent molecular weight of 68,000 and phosphorylated rhodopsin at the rate of 10 nmol phosphate/min/mg of the enzyme.  相似文献   

8.
Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts   总被引:2,自引:0,他引:2  
C Pande  A Pande  K T Yue  R Callender  T G Ebrey  M Tsuda 《Biochemistry》1987,26(16):4941-4947
We report here the resonance Raman spectra of octopus rhodopsin and its photoproducts, bathorhodopsin and acid metarhodopsin. These studies were undertaken in order to make comparisons with the well-studied bovine pigments, so as to understand the similarities and the differences in pigment structure and photochemical processes between vertebrates and invertebrates. The flow method was used to obtain the Raman spectrum of rhodopsin at 13 degrees C. The bathorhodopsin spectrum was obtained by computer subtraction of the spectra containing different photostationary mixtures of rhodopsin, isorhodopsin, hypsorhodopsin, and bathorhodopsin, obtained at 12 K using the pump-probe technique and from measurements at 80 K. Like their bovine counterparts, the Schiff base vibrational mode appears at approximately 1660 cm-1 in octopus rhodopsin and the photoproducts, bathorhodopsin and acid metarhodopsin, suggesting a protonated Schiff base linkage between the chromophore and the protein. Differences between the Raman spectra of octopus rhodopsin and bathorhodopsin indicate that the formation of bathorhodopsin is associated with chromophore isomerization. This inference is substantiated by the chromophore chemical extraction data which show that, like the bovine system, octopus rhodopsin is an 11-cis pigment, while the photoproducts contain an all-trans pigment, in agreement with previous work. The octopus rhodopsin and bathorhodopsin spectra show marked differences from their bovine counterparts in other respects, however. The differences are most dramatic in the structure-sensitive fingerprint and the HOOP regions. Thus, it appears that although the two species differ in the specific nature of the chromophore-protein interactions, the general process of visual transduction is the same.  相似文献   

9.
Kawamura S  Colozo AT  Müller DJ  Park PS 《Biochemistry》2010,49(49):10412-10420
Rhodopsin is the light receptor that initiates phototransduction in rod photoreceptor cells. The structure and function of rhodopsin are tightly linked to molecular interactions that stabilize and determine the receptor's functional state. Single-molecule force spectroscopy (SMFS) was used to localize and quantify molecular interactions that structurally stabilize bovine and mouse rhodopsin from native disk membranes of rod photoreceptor cells. The mechanical unfolding of bovine and mouse rhodopsin revealed nine major unfolding intermediates, each intermediate defining a structurally stable segment in the receptor. These stable structural segments had similar localization and occurrence in both bovine and mouse samples. For each structural segment, parameters describing their unfolding energy barrier were determined by dynamic SMFS. No major differences were observed between bovine and mouse rhodopsin, thereby implying that the structures of both rhodopsins are largely stabilized by similar molecular interactions.  相似文献   

10.
Invertebrates such as Drosophila or Limulus assemble their visual pigment into the specialized rhabdomeric membranes of photoreceptors where phototransduction occurs. We have investigated the biosynthesis of rhodopsin from the Limulus lateral eye with three cell culture expression systems: mammalian COS1 cells, insect Sf9 cells, and amphibian Xenopus oocytes. We extracted and affinity-purified epitope-tagged Limulus rhodopsin expressed from a cDNA or cRNA from these systems. We found that all three culture systems could efficiently synthesize the opsin polypeptide in quantities comparable with that found for bovine opsin. However, none of the systems expressed a protein that stably bound 11-cis-retinal. The protein expressed in COS1 and Sf9 cells appeared to be misfolded, improperly localized, and proteolytically degraded. Similarly, Xenopus oocytes injected with Limulus opsin cRNA did not evoke light-sensitive currents after incubation with 11-cis-retinal. However, injecting Xenopus oocytes with mRNA from Limulus lateral eyes yielded light-dependent conductance changes after incubation with 11-cis-retinal. Also, expressing Limulus opsin cDNA in the R1-R6 photoreceptors of transgenic Drosophila yielded a visual pigment that bound retinal, had normal spectral properties, and coupled to the endogenous phototransduction cascade. These results indicate that Limulus opsin may require one or more photoreceptor-specific proteins for correct folding and/or chromophore binding. This may be a general property of invertebrate opsins and may underlie some of the functional differences between invertebrate and vertebrate visual pigments.  相似文献   

11.
The role of the C-terminal domain of rhodopsin in the activation of transducin was studied. The treatment of photoreceptor membranes with trypsin, thermolysin, and Asp-N-endoprotease led to the respective rhodopsin species devoid of 9, 12-, or 19-aa C-terminal fragments. It was shown that the removal of 9-aa fragment by trypsin does not affect the catalytic activity of the receptor, whereas the thermolysin-induced truncation of the rhodopsin C-terminus by 12 aa about 1.5-fold enhances its activity. The Asp-N-endoprotease-assisted removal of 19 aa (i.e., the shortening by seven more C-terminal aa) virtually unchanges the rhodopsin catalytic activity compared to the preparation truncated with thermolysin. These results suggest that the part of the rhodopsin C-terminal fragment between the sites of its cleavage by trypsin and thermolysin (Val337-Ser338-Lys339) inhibits the signal transduction from rhodopsin to the next component of visual cascade. The English version of the paper.  相似文献   

12.
It was recently found that NOP-1, a membrane protein of Neurospora crassa, shows homology to haloarchaeal rhodopsins and binds retinal after heterologous expression in Pichia pastoris. We report on spectroscopic properties of the Neurospora rhodopsin (NR). The photocycle was studied with flash photolysis and time-resolved Fourier-transform infrared spectroscopy in the pH range 5-8. Proton release and uptake during the photocycle were monitored with the pH-sensitive dye, pyranine. Kinetic and spectral analysis revealed six distinct states in the NR photocycle, and we describe their spectral properties and pH-dependent kinetics in the visible and infrared ranges. The phenotypes of the mutant NR proteins, D131E and E142Q, in which the homologues of the key carboxylic acids of the light-driven proton pump bacteriorhodopsin, Asp-85 and Asp-96, were replaced, show that Glu-142 is not involved in reprotonation of the Schiff base but Asp-131 may be. This implies that, if the NR photocycle is associated with proton transport, it has a low efficiency, similar to that of haloarchaeal sensory rhodopsin II. Fourier-transform Raman spectroscopy revealed unexpected differences between NR and bacteriorhodopsin in the configuration of the retinal chromophore, which may contribute to the less effective reprotonation switch of NR.  相似文献   

13.
Oxidation with N-bromosuccinimide detects a total of about ten tryptophan residues in detergent-solubilized bovine rhodopsin. One of these tryptophans is more reactive in bleached than in unbleached rhodopsin, suggesting its involvement in the chromophore binding site. Oxidation of this residue is accompanied by loss of the 500nm. absorbance in unbleached rhodopsin. Similar experiments with bacteriorhodopsin are inconclusive.  相似文献   

14.
Studies of bacteriorhodopsin have indicated that the charge environment of the protonated Schiff base consists of residues Asp-85, Asp-212, and Arg-82. As shown recently (Marti, T., R?sselet, S. J., Otto, H., Heyn, M. P., and Khorana, H. G. (1991) J. Biol. Chem. 266, 18674-18683), in the double mutant Asp-85----Asn/Asp-212----Asn chromophore formation is restored in the presence of salts, suggesting that exogenous anions function as counterions to the protonated Schiff base. To investigate the role of Arg-82 and of the Schiff base in anion binding, we have prepared the triple mutant Arg-82----Gln/Asp-85----Asn/Asp-212----Asn and compared its properties with those of the Asp-85----Asn/Asp-212----Asn double mutant. Regeneration of the chromophore with absorption maximum near 560 nm occurs in the triple mutant in the presence of millimolar salt, whereas in the double mutant molar salt concentrations are required. Spectrometric titrations reveal that the pKa of Schiff base deprotonation is markedly reduced from 11.3 for the wild type to 4.9 for the triple mutant in 1 mM NaCl and to 5.5 for the double mutant in 10 mM NaCl. In both mutants, increasing the chloride concentration promotes protonation of the chromophore and results in a continuous rise of the Schiff base pKa, yielding a value of 8.4 and 7.6, respectively, in 4 M NaCl. The absorption maximum of the two mutants shows a progressive red shift, as the ionic radius of the halide increases in the sequence fluoride, chloride, bromide, and iodide. An identical spectral correlation in the presence of halides is observed for the acid-purple form of bacteriorhodopsin. We conclude, therefore, that upon neutralization of the two counterions Asp-85 and Asp-212 by mutation or by protonation at low pH, exogenous anions substitute as counterions by directly binding to the protonated Schiff base. This interaction may provide the basis for the proposed anion translocation by the acid-purple form of bacteriorhodopsin as well as by the related halorhodopsin.  相似文献   

15.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

16.
Since the 1930s, the spectrum of vertebrate rhodopsin has been considered to be independent of pH (Lythgoe, R.J. 1937. J. Physiol. 89:331-358; Wald, G. 1938. J. Gen. Physiol. 21:795-832). Here I report that the spectrum of bovine rhodopsin is pH dependent. At pHs greater than 9.0, there is a shift to shorter wavelengths of its 500-nm absorption band. This shift is accounted for by the existence of a high pH form of bovine rhodopsin, with absorption maximum at 494 nm and a slightly lower extinction coefficient. The high-pH form results from the low-pH form by the deprotonation of a single group with a pK of approximately 10.2 for rhodopsin in rod disk membranes in 4.0 M KCl. The shift is observed for sheep and chicken rhodopsins, but not for frog, toad, and octopus rhodopsins. This indicates a specific amino acid difference between these rhodopsins that is potentially relevant for the mechanism of color regulation.  相似文献   

17.
Regulation of arrestin binding by rhodopsin phosphorylation level   总被引:1,自引:0,他引:1  
Arrestins ensure the timely termination of receptor signaling. The role of rhodopsin phosphorylation in visual arrestin binding was established more than 20 years ago, but the effects of the number of receptor-attached phosphates on this interaction remain controversial. Here we use purified rhodopsin fractions with carefully quantified content of individual phosphorylated rhodopsin species to elucidate the impact of phosphorylation level on arrestin interaction with three biologically relevant functional forms of rhodopsin: light-activated and dark phosphorhodopsin and phospho-opsin. We found that a single receptor-attached phosphate does not facilitate arrestin binding, two are necessary to induce high affinity interaction, and three phosphates fully activate arrestin. Higher phosphorylation levels do not increase the stability of arrestin complex with light-activated rhodopsin but enhance its binding to the dark phosphorhodopsin and phospho-opsin. The complex of arrestin with hyperphosphorylated light-activated rhodopsin is less sensitive to high salt and appears to release retinal faster. These data suggest that arrestin likely quenches rhodopsin signaling after the third phosphate is added by rhodopsin kinase. The complex of arrestin with heavily phosphorylated rhodopsin, which appears to form in certain disease states, has distinct characteristics that may contribute to the phenotype of these visual disorders.  相似文献   

18.
A general procedure to incorporate membrane proteins in a native state into large single bilayer vesicles is described. The results obtained with rhodopsin from vertebrate and invertebrate retinas are presented. The technique involves: (a) the direct transfer of rhodopsin-lipid complexes from native membranes into ether or pentane, and (b) the sonication of the complex in apolar solvent with aqueous buffer followed by solvent evaporation under reduced pressure. The spectral properties of rhodopsin in the large vesicles are similar to those of rhodopsin in photoreceptors; furthermore, bleached bovine rhodopsin is chemically regenerable with 9-cis retinal. These results establish the presence of photochemically functional rhodopsin in the large vesicles. Freeze-fracture replicas of the vesicles reveal that both internal and external leaflets contain numerous particles approximately 80 A in diameter, indicating that rhodopsin is symmetrically distributed within the bilayer. More than 75% of the membrane area is incorporated into vesicles larger than 0.5 micron and approximately 40% into vesicles larger than 1 micron.  相似文献   

19.
The interactions of the three catalytic-site mutants of Bacillus subtilis alpha-amylase/(DN176 [Asp-176----Asn], EQ208 [Glu-208----Gln] and DN269 [Asp-269----Asn]) with substrates and a pseudo-oligosaccharide inhibitor, acarbose, have been studied by means of difference absorption spectroscopy and affinity chromatography. The addition of maltopentaose or soluble starch to the inactive mutant enzymes mostly resulted in difference spectra characteristic of tryptophan perturbation, enabling determination of the dissociation constants. The results show that conversion of Glu-208 to Gln greatly enhanced substrate binding, implying that Glu-208 interacts unfavorably with the substrate's ground state, preventing its optimal fit to the active site. The affinity for acarbose was greatly reduced in DN269 and EQ208, but less so in DN176, suggesting that Asp-269 and Glu-208 are more important than Asp-176 in stabilizing the transition state. These results are consistent with Glu-208 and Asp-269 being the key catalytic residues, as proposed for Taka-amylase A.  相似文献   

20.
Visual pigments are a class of receptor proteins that absorb light and trigger sensory signals. Retinal-containing proteins are used in nature as photoreceptors mainly in animals vision. Mammalian rhodopsin is the best studied example of a light sensor which couples photon absorption to a cascade of biochemical reactions amplifying the input signal. A surprising discovery was to find rhodopsin also in Archaebacteria and in unicellular eukaryotes. On the basis of absorption microspectroscopic measurements and of inhibition experiments on pigment biosynthetic pathways, we have recently suggested that a rhodopsin could be the functional receptor of the visual process in Euglena gracilis, a flagellate which can use light directly to promote photosynthetic reactions, or as an incident flux of information to adjust its swimming orientation. We here report purification and identification of all-trans-retinal by column chromatography, HPLC and GC-MS in E. gracilis; these findings indicate with absolute certainty that rhodopsin is the photoreceptor molecule of this microorganism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号