首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Songs mediate mate attraction and territorial defence in songbirds during the breeding season. Outside of the breeding season, the avian vocal repertoire often includes calls that function in foraging, antipredator and social behaviours. Songs and calls can differ substantially in their spectral and temporal content. Given seasonal variation in the vocal signals, the sender–receiver matching hypothesis predicts seasonal changes in auditory processing that match the physical properties of songs during the breeding season and calls outside of it. We tested this hypothesis in white-breasted nuthatches, Sitta carolinensis, tufted titmice, Baeolophus bicolor, and Carolina chickadees, Poecile carolinensis. We measured the envelope-following response (EFR), which quantifies phase locking to the amplitude envelope, and the frequency-following response (FFR), which quantifies phase locking to the temporal fine structure of sounds. Because songs and calls of nuthatches are amplitude modulated at different rates, we predicted seasonal changes in EFRs that match the rates of amplitude fluctuation in songs and calls. In chickadees and titmice, we predicted stronger FFRs during the spring and stronger EFRs during the winter because songs are tonal and calls include amplitude-modulated elements. In all three species, we found seasonal changes in EFRs and FFRs. EFRs varied across seasons and matched the amplitude modulations of songs and calls in nuthatches. In addition, female chickadees had stronger EFRs in the winter than in the spring. In all three species, FFRs during the spring tended to be stronger in females than in males. We also found species differences in EFRs and FFRs in both seasons; EFRs and FFRs tended to be higher in nuthatches than in chickadees and titmice. We discuss the potential mechanisms underlying seasonality in EFRs and FFRs and the implications of our results for communication during the breeding season and outside of it, when these three species form mixed-species flocks.  相似文献   

2.
We tested for seasonal plasticity of the peripheral auditory system of three North American members of the Sylvioidea: Carolina chickadees (Poecile carolinensis), tufted titmice (Baeolophus bicolor), and white-breasted nuthatches (Sitta carolinensis). We measured three classes of auditory evoked responses (AER) to tone stimuli: sustained receptor/neural responses to pure-tone condensation waveforms, the frequency-following response (FFR), and the earliest peak of the AER to stimulus onset (tone onset response). Seasonal changes were detected in all classes of AERs in chickadees and nuthatches. Seasonal changes in titmice were restricted to the tone onset response. Interestingly, changes detected in chickadees (and to a lesser extent in titmice) were generally in an opposite direction to changes seen in nuthatches, with chickadees exhibiting greater amplitude AER responses in the spring than in winter, and nuthatches exhibiting greater amplitude AER responses in winter than in spring. In addition, the seasonal differences in the sustained responses tended to be broad-band in the chickadees but restricted to a narrower frequency range in nuthatches. In contrast, seasonal differences in the onset response were over a broader frequency range in titmice than in chickadees and nuthatches. We discuss some possible mechanistic and functional explanations for these seasonal changes.  相似文献   

3.
Traffic noise likely reaches a wide range of species and populations throughout the world, but we still know relatively little about how it affects anti-predator behavior of populations. We tested for possible effects of traffic noise on responses to predator acoustic cues in Carolina chickadees (Poecile carolinensis), tufted titmice (Baeolophus bicolor), and white-breasted nuthatches (Sitta carolinensis) near 14 independent feeding stations in eastern Tennessee. We compared anti-predator calling and seed-taking behavior in response to playbacks of predator stimuli (screech owl calls) at sites naturally exposed to traffic noise and at sites that faced relatively little traffic noise. The screech owl call playback was designed to simulate the approach of this dangerous predator to a feeder being used by these small songbirds. We found that chickadees responded consistently to the owl stimuli across different levels of traffic noise. However, titmice, and nuthatches exhibited different behavioral responses to the predator stimulus, suggesting that traffic noise masked these low-frequency predator calls. Overall, chickadees and nuthatches showed the broadest anti-predator behavioral responses in comparison to titmice, corroborating earlier published work with an Indiana population. Finally, populations exposed to traffic noise overall seemed less able to detect predator cues potentially masked by that noise, and future work will need to assess likely seasonal variation in these responses as well as species-level variation in anti-predator responses in mixed-species groups.  相似文献   

4.
Little is known as to how visual systems and visual behaviors vary within guilds in which species share the same micro-habitat types but use different foraging tactics. We studied different dimensions of the visual system and scanning behavior of Carolina chickadees, tufted titmice, and white-breasted nuthatches, which are tree foragers that form heterospecific flocks during the winter. All species had centro-temporally located foveae that project into the frontal part of the lateral visual field. Visual acuity was the highest in nuthatches, intermediate in titmice, and the lowest in chickadees. Chickadees and titmice had relatively wide binocular fields with a high degree of eye movement right above their short bills probably to converge their eyes while searching for food. Nuthatches had narrower binocular fields with a high degree of eye movement below their bills probably to orient the fovea toward the trunk while searching for food. Chickadees and titmice had higher scanning (e.g., head movement) rates than nuthatches probably due to their wider blind areas that limit visual coverage. The visual systems of these three species seem tuned to the visual challenges posed by the different foraging and scanning strategies that facilitate the partitioning of resources within this guild.  相似文献   

5.
When animals detect predators they modify their behavior to avoid predation. However, less is known about whether prey species modify their behavior in response to predator body and behavioral cues. Recent studies indicated that tufted titmice, a small songbird, decreased their foraging behavior and increased their calling rates when they detected a potential predator facing toward a feeder they were using, compared to a potential predator facing away from that feeder. Here, we tested whether related Carolina chickadees, Poecile carolinensis, were also sensitive not just to the presence of a predator model, but to its facial/head orientation. Although chickadees are closely related to titmice, recent studies in different populations suggest chickadees respond to risky contexts involving predators differently than titmice. We conducted two field studies near feeders the birds were exploiting. In Study One, a mask‐wearing human observer stood near the feeder. In Study Two, a model of a domestic cat was positioned near the feeder. In both studies, the potential threatening stimulus either faced toward or faced away from the feeder. Chickadees avoided the feeder more in both studies when the potential predator was present, and showed strongest feeder avoidance when the potential predator faced toward the feeder. Chickadee calling behavior was also affected by the facial orientation of the potential predator in Study 1. These results suggest that, like titmice, chickadees exhibit predation‐risk‐sensitive foraging and calling behavior, in relation to facial and head orientation of potential threats. These small birds seem to attend to the likely visual space of potential predators. Sensitivity to predator cues like behavior and body posture must become more central to our theories and models of anti‐predator behavioral systems.  相似文献   

6.
We conducted a comparative study of the peripheral auditory system in six avian species (downy woodpeckers, Carolina chickadees, tufted titmice, white-breasted nuthatches, house sparrows, and European starlings). These species differ in the complexity and frequency characteristics of their vocal repertoires. Physiological measures of hearing were collected on anesthetized birds using the auditory brainstem response to broadband click stimuli. If auditory brainstem response patterns are phylogenetically conserved, we predicted woodpeckers, sparrows, and starlings to be outliers relative to the other species, because woodpeckers are in a different Order (Piciformes) and, within the Order Passeriformes, sparrows and starlings are in different Superfamilies than the nuthatches, chickadees, and titmice. However, nuthatches and woodpeckers have the simplest vocal repertoires at the lowest frequencies of these six species. If auditory brainstem responses correlate with vocal complexity, therefore, we would predict nuthatches and woodpeckers to be outliers relative to the other four species. Our results indicate that auditory brainstem responses measures in the spring broadly correlated with both vocal complexity and, in some cases, phylogeny. However, these auditory brainstem response patterns shift from spring to winter due to species-specific seasonal changes. These seasonal changes suggest plasticity at the auditory periphery in adult birds.  相似文献   

7.
Because "odd" individuals often suffer disproportionately highrates of predation, solitary individuals should join groupswhose members are most similar to themselves in appearance.We examined group-choice decisions by individuals in armoredand nonarmored species and predicted that either (1) the oddityeffect would result in preference for conspecific groups forsolitary individuals of both species, or (2) individuals inthe armored species would prefer to associate with groups containingindividuals of the more vulnerable species. Armored brook sticklebacks(Culaea inconstans) and nonarmored fathead minnows (Pimephalespromelas) have the same predators and often occur together instreams. In mixed-species shoals, yellow perch (Perca flavescens)attacked minnows earlier and more often than sticklebacks. Wetested whether solitary minnows and sticklebacks preferred toassociate with conspecific or heterospecific shoals under conditionsof both low and high predation risk. When predation risk washigh, minnows preferred to associate with conspecifics overheterospecifics, as predicted by the oddity effect. In contrast,sticklebacks preferentially associated with groups of minnowsover groups of conspecifics when predation risk was high. Whenpredation risk was low, solitary individuals of both speciespreferentially associated with conspecific over heterospecificshoals. Stickleback shoal choices under low-risk conditionsmay have been influenced by interspecific competition for food.In feeding experiments, minnows were more efficient foragersthan sticklebacks, so it should benefit sticklebacks to avoidminnows unless predation risk is high. Therefore, for armoredprey, the benefits of associating with more vulnerable preyappear to override the costs of both the oddity effect and foodcompetition when predation risk is high.  相似文献   

8.
Physical tradeoffs may in some cases constrain the evolution of sensory systems. The peripheral auditory system, for example, performs a spectral decomposition of sound that should result in a tradeoff between frequency resolution and temporal resolution. We assessed temporal resolution in three songbird species using auditory brainstem responses to paired click stimuli. Temporal resolution was greater in house sparrows (Passer domesticus) than Carolina chickadees (Poecile carolinensis) and white-breasted nuthatches (Sitta carolinensis), as predicted based on previous observations of broader auditory filters (lower frequency resolution) in house sparrows. Furthermore, within chickadees, individuals with broader auditory filters had greater temporal resolution. In contrast to predictions however, temporal resolution was similar between chickadees and nuthatches despite broader auditory filters in chickadees. These results and the results of a model simulation exploring the effect of broadened auditory filter bandwidth on temporal resolution in the auditory periphery strongly suggest that frequency resolution constrains temporal resolution in songbirds. Furthermore, our results suggest that songbirds have greater temporal resolution than some mammals, in agreement with recent behavioral studies. Species differences in temporal resolution may reflect adaptations for efficient processing of species-specific vocalizations, while individual differences within species may reflect experience-based developmental plasticity or hormonal effects.  相似文献   

9.
Radio‐frequency identification (RFID) technology has gained popularity in ornithological studies as a way to collect large quantities of data to answer specific biological questions, but few published studies report methodologies used for validating the accuracy of RFID data. Further, connections between the RFID data and the behaviors of interest in a study are not always clearly established. These methodological deficiencies may seriously impact a study''s results and subsequent interpretation. We built RFID‐equipped bird feeders and mounted them at three sites in Tompkins County, New York. We deployed passive integrated transponder tags on black‐capped chickadees, tufted titmice, and white‐breasted nuthatches and used a GoPro video camera to record the three tagged species at the feeders. We then reviewed the video to determine the accuracy of the RFID reader and understand the birds’ behavior at the feeders. We found that our RFID system recorded only 34.2% of all visits by tagged birds (n = 237) and that RFID detection increased with the length of a visit. We also found that our three tagged species and two other species that visited the feeders, American goldfinch and hairy woodpecker, retrieved food in 79.5% of their visits. Chickadees, titmice, nuthatches, and woodpeckers spent, on average, 2.3 s at feeders to collect one seed per visit. In contrast, goldfinches spent an average of 9.0 s at feeders and consumed up to 30 seeds per visit. Our results demonstrate the importance of confirming detection accuracy and that video can be used to identify behavioral characteristics associated with an RFID reader''s detections. This simple—yet time‐intensive—method for assessing the accuracy and biological meaning of RFID data is useful for ornithological studies but can be used in research focusing on various taxa and study systems.  相似文献   

10.
T. J. Valone  S. L. Lima 《Oecologia》1987,71(2):286-294
Summary In earlier work (Lima et al. 1985; Lima 1985), we found that gray squirrels (Sciurus carolinensis) and black-capped chickadees (Parus atricapillus) when exploiting a patch of food in the open often carried individual food items to protective cover for consumption. Their tendency to carry (i) decreased as distance of the patch from cover increased, and (ii) increased as size of the available food items increased. A simple model indicated that this behavior was consistent with a trade-off between efficient foraging and predation risk. Maximal feeding efficiency was achieved by always eating at the patch, whereas minimal time exposure to predators was achieved by carrying all items to cover for consumption. Because predation-riskrelated trade-offs are likely to be of importance in the determination of feeding behavior, we surveyed the behavior of 10 bird species feeding under similar conditions to assess both the generality of the above results and the adequacy of some simple assumptions concerning the assessment and perception of predation risk.We observed considerable interspecific variability in behavior. Of the 10 species studied, 4 behaved in a manner similar to the squirrels and chickadees. Five other species showed an increased tendency to carry with larger items but no clear tendency to decrease carrying from longer distances. The one remaining species exhibited neither behavioral trend.The model that predicted squirrel and chickadee behavior failed to account for all observed behavior. The behavior of all species, however, was influenced by predation risk, and the discrepancy between theory and observation most likely reflects shortcomings of the model. These discrepancies indicate that other factors, in addition to exposure time, may be of significance in the perception of predation risk by several (or all) of the species studied. Of particular importance may be a distance-dependent probability of escaping attack. Other results indicate that predation risk may influence handling times via aspects of the digestive process.  相似文献   

11.
There is increasing concern that synergistic interactions between stressors may result in accelerated biodiversity loss. Yet, the prevalence and magnitude of these interactions remain one of the largest uncertainties in projections of future ecological change. Synergistic interactions between pesticide stress and predation risk are receiving increasing attention because they indicate that standard pesticide tests in the absence of predation risk may underestimate effects that occur under natural conditions. We questioned whether synergisms (or interactions in general), by differently shaping individual species’ sensitivities, can modulate species sensitivity rankings (SSRs) in survival and growth rate. Using laboratory and outdoor mesocosm experiments with five species of water boatmen (Hemiptera: Corixidae) we studied mortality and growth rate over seven days of exposure. We evaluated the presence and nature of interactions between the pesticide endosulfan and predation risk and tested to what extent this affected the SSRs to endosulfan. The combined exposure to the pesticide and predation risk resulted in synergistic effects for survival (Sigara lateralis) and growth rate (Sigara iactans) and in an antagonistic effect for growth rate (Hesperocorixa linnaei and female Sigara striata). These results suggest that standard tests may underestimate the pesticide effect in a natural predator environment for some species. While the effects of these interactions on SSRs were not strong and SSRs remained largely similar in the absence and presence of predation risk, some obvious species rank shifts occurred for growth rate which may potentially affect community structure through changed competitive strength. The study of SSRs and their dependency on biotic stressors may provide a simple conceptual and predictive framework to increase our understanding of how stressors like pesticides may differentially affect community structure in the absence and presence of another stressor.  相似文献   

12.
Social prey species respond to predation risk by modifying habitat selection and grouping behaviour. These responses may depend on both actual predation risk (predator probability of occurrence) and/or on perceived predation risk associated with habitat structure. Other factors like food availability and co-occurrence with other species may also affect habitat selection and group formation. We analyse habitat selection and grouping behaviour (group size and cohesion) of lesser rhea (Rhea pennata subsp. pennata), a ratite endemic of South America inhabiting steppe shrublands and grasslands, in relation to actual (puma probability of occurrence) and perceived (habitat structure: openness, visibility) predation risk, co-occurrence with other herbivore species and forage availability in the Chilean Patagonia. We used data from 9 sampling seasons in 5 years. Results show that habitat selection, group size and cohesion in lesser rhea were mainly driven by variables associated with perceived predation risk and by co-occurrence with other herbivores both during breeding and non–breeding season. As expected, lesser rhea preferred open habitats (vegas and grasslands) that allow a behaviour of ‘watch and run’ to avoid predation and formed larger groups in them. Moreover, lesser rhea positively selected year-round habitats where livestock occur, forming large groups during non–breeding season there. Group size and co-occurrence with other herbivores significantly decreased group cohesion, suggesting a reduction of perceived predation risk. Therefore, lesser rhea seems to take advantage of forming mixed interspecific groups to reduce predation risk. These results suggest that lesser rhea habitat selection and grouping behaviour are preferentially driven by factors related to perceived predation risk than by actual predator occurrence or food availability.  相似文献   

13.
Intact phytoplankton and microzooplankton communities from eutrophicStar Lake were incubated for 4 days with and without Daphniapulex, Daphnia galeaia mendotae, or a natural assemblage ofDaphnia species. They were sampled at the onset and terminationof the experiment for bacterial, phytoplankton, ciliate, rotifer,copepod and cladoceran densities. The cladocerans had variedeffects on the rotifers, ranging from significant suppressionof most rotifer species (Keratella cochlearis, Polyarthra remata,Keratella crassa) in the D.pulex jars, to the suppression ofone (K.crassa) or no species in the D.galeata mendotae and StarLake Daphnia assemblage jars, respectively. Small ciliates (<30µm, longest dimension), such as Strobilidium sp. and Pseudo-cyclidiumsp., were adversely affected by most of the cladoceran treatments,while several larger ciliates (>81 µm) were unaffectedin all such treatments. Ciliates were not consistently morevulnerable to cladoceran suppression than similarly sized rotifers.The suppression of ciliates and rotifers was attributable toboth direct effects (predation, interference, or both) and indirecteffects (e.g. resource competition) of the cladocerans. 1Present address: Department of Biology, University of Louisville,Louisville, KY 40292, USA  相似文献   

14.
Poysa  Hannu 《Behavioral ecology》1999,10(5):533-540
Previous studies of the role of nest predation in conspecificnest parasitism have not taken into account the possibilitythat predation risk may not be randomly distributed among nestsites and that breeding individuals may use different cues toassess the risk and adjust their reproductive tactic betweenyears accordingly. Especially in cavity-nesting species, therole of nest predation in conspecific nest parasitism has beendownplayed, while the role of nest site limitation has beenhighlighted. Using both observational and experimental data,I show that in the common goldeneye (Bucephala clangula), acavity-nesting species in which conspecific nest parasitism iscommon, predation risk varies considerably between nest sitesand does not follow a random expectation. The inequality inpredation risk between nest sites also showed up in the occurrenceof parasitized nests in an experimental setup. Nests parasitizedin year t were more frequent in those nest sites that were notdepredated during the previous nesting attempt in year t - nthan in nest sites that were depredated and in control nestsites that had not been used for nesting before. A nest siteaddition experiment revealed that conspecific nest parasitismwas not associated with nest site limitation. My findings givesupport for the hypothesis that nest predation is an importantecological factor explaining conspecific nest parasitism ingoldeneyes.  相似文献   

15.
We examined the effects of predation risk on the behavior ofrhinoceros auklets (Cerorhinca monocerata) breeding at PineIsland, British Columbia, in 1990. Provisioning parents in someareas of the colony risked predation by bald eagles (Haliacetusleucocephalus). Chicks in high and low predation risk areasof the colony hatched on approximately the same date, receivedsimilar amounts of food to 46 days of age, grew at the samerate, reached similar peak masses, and fledged at similar masses.However, chicks in high predation areas fledged at a youngerage than did chicks in low predation areas. These data are consistentwith the hypothesis that parents in high risk areas terminatedprovisioning several days before those in lower risk areas.Mass at fledging was inversely related to age at fledging inboth high and low risk areas. The regression line for the highrisk habitats lies below that from the low risk habitats, aspredicted by a model that examines optimal time of fledgingfrom the perspective of the parents. We conclude that risk ofpredation represents a significant cost of reproduction to somerhinoceros auklets and that individual auklets within the colonyvary their behavior according to predation risk.  相似文献   

16.
Chick‐a‐dee calls of Poecile (chickadee) and Baeolophus (titmouse) species are complex in terms of the structural composition of note types and the diversity of messages. Studies so far have mainly focused on the calls of various chickadee and just one titmouse species—the tufted titmouse (B. bicolor). To begin to address this lack of titmouse data, our study investigated variation in note composition of calls of bridled titmice (B. wollweberi). We obtained calls from 26 flocks in the Chiricahua Mountains of Arizona in the overwintering flocking period. Bridled titmice produce proportionally more non‐combinatorial call variants than combinatorial call variants. The number of the single noted calls furthermore exceeded the number of multinote calls. In general, structural variation in the combinatorial calls appears to be comparable to calls of better‐studied chickadees and of tufted titmice, although bridled titmice appear to have a unique call length distribution. We also analyzed some behavioral associations with call variation and found that flight behavior and close interactions between individuals were associated with use of specific note types. Finally, we found microgeographic variation in note type use in these calls. We discuss some possible explanations for call complexity in this species.  相似文献   

17.
ABSTRACT We examined effects of prescribed fire on 3 wintering, bark-foraging birds, hairy woodpeckers (Picoides villosus), pygmy nuthatches (Sitta pygmaea), and white-breasted nuthatches (S. carolinensis), in ponderosa pine (Pinus ponderosa) forests of northern Arizona, USA. During winters of 2004–2006, we compared bird density, foraging behavior, and bark beetle activity among burned treatment and unburned control units. Hairy woodpecker density was 5 times greater in burn units, whereas white-breasted nuthatches and pygmy nuthatches had similar densities between treatments. Compared to available trees, trees used by foraging hairy woodpeckers had 9 times greater odds of having bark beetles in control units and 12 times greater odds in burn units. Tree diameter appeared to be the main factor bark-foraging birds used in selecting winter foraging trees. Our results suggest that forest managers can use prescribed fire treatments without detrimental effects to wintering nuthatches, while providing additional food to hairy woodpeckers.  相似文献   

18.
Harvest rates and foraging strategies in Negev Desert gerbils   总被引:2,自引:0,他引:2  
We examined the foraging strategy and quantified the foragingtraits of two nocturnal rodent species, Allenby's gerbil (Gerbillusallenbyi) and the greater Egyptian sand gerbil (Gerbillus pyramidum).In the laboratory, both species used two distinct foragingstrategies: either they immediately consumed seeds found ina patch (seed tray); or they collected and delivered the seedsto their nest box for later consumption. Moreover, we founda transition in foraging strategy among individual G. allenbyi under laboratory conditions; they all began by consuming theseeds on the tray and, after 7 days on average, switched tothe collecting strategy. By contrast, in the field both speciesused only one foraging strategy; they collected and deliveredthe seeds to their burrow or to surface caches for later consumption.Furthermore, G. allenbyi and G. pyramidum collected seeds atsignificantly higher rates in the field than in the laboratorybecause the seed encounter rates for both species were higherin the field. This suggests that in natural conditions, probablyinvolving predation risk and competitive pressure, gerbilsmust respond in two ways: (1) they must choose a foraging strategythat reduces predation risk by minimizing time spent feedingoutside their burrows; and (2) they must forage more efficiently.In the field, seed handling time of the larger species, G. pyramidum, was shorter than that of the smaller one, G. allenbyi.This difference may give G. pyramidum an advantage when resourcelevels are high and when most of a forager's time is spent handling seeds rather than searching for more seeds. Additionally,our field study showed that the seed encounter rate of G. allenbyiwas higher than that of G. pyramidum. This difference may giveG. allenbyi an advantage when resource levels are low and whensearching occupies most of the forager's time. The differentadvantages that each species has over the other, under differentconditions, may well be factors promoting their coexistenceover a wide range of resource densities.  相似文献   

19.
Gygax  Lorenz 《Behavioral ecology》2002,13(5):583-590
I investigated group size variability in dolphins and porpoisesusing intraspecific comparisons. Explanatory factors consideredin the analysis were variables of the physical environment,the diet, and the life history of the species. Open habitatand small body size were viewed as increasing predation risk.This pattern was apparent in Risso's dolphins (Grampus griseus) and weakly apparent in bottlenose dolphins (Tursiops spp.).Group size was negatively correlated with body size in pilotwhales (Globicephala spp.) and positively correlated with theopenness of habitat in killer whales (Orcinus orca), stripeddolphins (Stenella coeruleoalba), and common dolphins (Delphinus spp.). No such relationship was found for harbor and Dall'sporpoises (Phocoena phocoena, P. dalli). Group size also seemedto vary depending on other physical measures of the habitat,which may indirectly reflect diet; group size showed U-shapedpatterns if related to temperature. The predictive power ofvariables comprising detailed prey information on group sizewas variable. For example, pilot whales had smaller group sizes when they fed more on mesopelagic fish and less on mesopelagiccephalopods, and common dolphins had larger groups if theyfed on varying types of fish. In most Delphinoidea species,group size could be described by the variables considered inthis study. But each species showed its own pattern of correlationsbetween group size and a specific set of explanatory variables. Thus, no general and consistent relation between group sizeand the other variables was found. It remains unknown whetherthese species-specific patterns result from a historical processor whether they are specialized adaptations.  相似文献   

20.
Predation is one of the most selective forces in evolution and, thus, predation may select against hybrids in narrow hybrid zones. It may be possible that parental phenotypes and hybrids differ in their responses towards predators or humans. As predation is difficult to observe I used flight-initiation distance (FID) as a metric of risk assessment. FID is a measurable outcome of the trade-off between fleeing and remaining. Here, I tested whether hybrid and parent crow phenotypes (Corvus corone, Corvus cornix) from the hybrid zone in Eastern Germany differ in their FID. Further, I measured many environmental and social variables to control statistically for their influence on FID. I sampled 154 individuals (53 hooded crows, 54 carrion crows, and 48 hybrids) in the hybrid zone in eastern Germany. I calculated a general linear model using a stepwise backward procedure to establish a minimum model containing only significant variables that explained FID in crows. The variable phenotype (hooded, carrion, hybrid) was then added to the model. There were no differences in FID between hybrids and both parental phenotypes types, suggesting similar risk assessment. This suggests that hybrids may behave similarly in their decision to flee as their parent phenotypes, which, in turn, provides no evidence for a selective disadvantage. An additional analysis focusing on pure phenotypic flocks showed that hybrids in pure hybrid flocks had a lower FID than both parental species in pure flocks. This suggests that hybrids in pure hybrid flocks may be at a disadvantage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号