首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin E and neurologic function in man   总被引:1,自引:0,他引:1  
Despite the well-known detrimental effect of vitamin E deficiency on the nervous system of many experimental animal models for decades, only over the past decade has vitamin E become recognized as essential for the maintenance of the structure and function of the human nervous system. This discovery of the neurologic role of vitamin E in man is due primarily to the identification of a degenerative neurologic syndrome in children and adults with chronic vitamin E deficiency caused by gastrointestinal diseases impairing fat and vitamin E absorption. A compelling body of clinical, neuropathologic, and therapeutic response evidence conclusively demonstrates that vitamin E deficiency is responsible for the neurologic disorder seen in such patients. In addition, an inborn error in vitamin E metabolism, the Isolated Vitamin E Deficiency Syndrome, causes vitamin E deficiency and similar neurologic degeneration in the absence of fat malabsorption. Guidelines for the evaluation and treatment of vitamin E deficiency in relevant clinical circumstances are provided. The possible role of vitamin E in treating other neurologic diseases is discussed.  相似文献   

2.
Vitamin E and its function in membranes   总被引:10,自引:0,他引:10  
Vitamin E is a fat-soluble vitamin. It is comprised of a family of hydrocarbon compounds characterised by a chromanol ring with a phytol side chain referred to as tocopherols and tocotrienols. Tocopherols possess a saturated phytol side chain whereas the side chain of tocotrienols have three unsaturated residues. Isomers of these compounds are distinguished by the number and arrangement of methyl substituents attached to the chromanol ring. The predominant isomer found in the body is alpha-tocopherol, which has three methyl groups in addition to the hydroxyl group attached to the benzene ring. The diet of animals is comprised of different proportions of tocopherol isomers and specific alpha-tocopherol-binding proteins are responsible for retention of this isomer in the cells and tissues of the body. Because of the lipophilic properties of the vitamin it partitions into lipid storage organelles and cell membranes. It is, therefore, widely distributed in throughout the body. Subcellular distribution of alpha-tocopherol is not uniform with lysosomes being particularly enriched in the vitamin compared to other subcellular membranes. Vitamin E is believed to be involved in a variety of physiological and biochemical functions. The molecular mechanism of these functions is believed to be mediated by either the antioxidant action of the vitamin or by its action as a membrane stabiliser. alpha-Tocopherol is an efficient scavenger of lipid peroxyl radicals and, hence, it is able to break peroxyl chain propagation reactions. The unpaired electron of the tocopheroxyl radical thus formed tends to be delocalised rendering the radical more stable. The radical form may be converted back to alpha-tocopherol in redox cycle reactions involving coenzyme Q. The regeneration of alpha-tocopherol from its tocopheroxyloxyl radical greatly enhances the turnover efficiency of alpha-tocopherol in its role as a lipid antioxidant. Vitamin E forms complexes with the lysophospholipids and free fatty acids liberated by the action of membrane lipid hydrolysis. Both these products form 1:1 stoichiometric complexes with vitamin E and as a consequence the overall balance of hydrophobic:hydrophillic affinity within the membrane is restored. In this way, vitamin E is thought to negate the detergent-like properties of the hydrolytic products that would otherwise disrupt membrane stability. The location and arrangement of vitamin E in biological membranes is presently unknown. There is, however, a considerable body of information available from studies of model membrane systems consisting of phospholipids dispersed in aqueous systems. From such studies using a variety of biophysical methods, it has been shown that alpha-tocopherol intercalates into phospholipid bilayers with the long axis of the molecule oriented parallel to the lipid hydrocarbon chains. The molecule is able to rotate about its long axis and diffuse laterally within fluid lipid bilayers. The vitamin does not distribute randomly throughout phospholipid bilayers but forms complexes of defined stoichiometry which coexist with bilayers of pure phospholipid. alpha-Tocopherol preferentially forms complexes with phosphatidylethanolamines rather than phosphatidylcholines, and such complexes more readily form nonlamellar structures. The fact that alpha-tocopherol does not distribute randomly throughout bilayers of phospholipid and tends to form nonbilayer complexes with phosphatidylethanolamines would be expected to reduce the efficiency of the vitamin in its action as a lipid antioxidant and to destabilise rather than stabilise membranes. The apparent disparity between putative functions of vitamin E in biological membranes and the behaviour in model membranes will need to be reconciled.  相似文献   

3.
Vitamin E: function and metabolism.   总被引:32,自引:0,他引:32  
Although vitamin E has been known as an essential nutrient for reproduction since 1922, we are far from understanding the mechanisms of its physiological functions. Vitamin E is the term for a group of tocopherols and tocotrienols, of which alpha-tocopherol has the highest biological activity. Due to the potent antioxidant properties of tocopherols, the impact of alpha-tocopherol in the prevention of chronic diseases believed to be associated with oxidative stress has often been studied, and beneficial effects have been demonstrated. Recent observations that the alpha-tocopherol transfer protein in the liver specifically sorts out RRR-alpha-tocopherol from all incoming tocopherols for incorporation into plasma lipoproteins, and that alpha-tocopherol has signaling functions in vascular smooth muscle cells that cannot be exerted by other forms of tocopherol with similar antioxidative properties, have raised interest in the roles of vitamin E beyond its antioxidative function. Also, gamma-tocopherol might have functions apart from being an antioxidant. It is a nucleophile able to trap electrophilic mutagens in lipophilic compartments and generates a metabolite that facilitates natriuresis. The metabolism of vitamin E is equally unclear. Excess alpha-tocopherol is converted into alpha-CEHC and excreted in the urine. Other tocopherols, like gamma- and delta-tocopherol, are almost quantitatively degraded and excreted in the urine as the corresponding CEHCs. All rac alpha-tocopherol compared to RRR-alpha-tocopherol is preferentially degraded to alpha-CEHC. Thus, there must be a specific, molecular role of RRR-alpha-tocopherol that is regulated by a system that sorts, distributes, and degrades the different forms of vitamin E, but has not yet been identified. In this article we try to summarize current knowledge on the function of vitamin E, with emphasis on its antioxidant vs. other properties, the preference of the organism for RRR-alpha-tocopherol, and its metabolism to CEHCs.  相似文献   

4.
5.
Vitamin E     
Azzi A  Zingg JM 《IUBMB life》2003,55(8):495-496
  相似文献   

6.
7.
Vitamin E     
  相似文献   

8.
1. Intracellular recordings were made from identified LP11, RBc4, D1 and E4 neurons in perioesophageal ganglionic ring with buccal ganglia of the mollusc Helix pomatia. 2. The modulations of acetylcholine (ACh)-induced current by vitamin E in these neurons were investigated using two-microelectrode intracellular recording and voltage-clamp techniques. 3. ACh receptors function on LP11 and RBc4 neurons was strongly regulated by intracellular calcium ions. For these ACh receptors application of 10(-6) to 10(-4) M vitamin E and calcium influx both induced an enhancement of the ACh-induced chloride current. Application of 10(-5) to 5.10(-5) M arachidonic acid on the same identified LP11 and RBc4 neurons was shown to evoke a decrease of the ACh-induced chloride current. 4. The elevation of calcium levels into D1 and E4 neurons induced a faint decrease of ACh-induced chloride current, but vitamin E and arachidonic acid were ineffective. 5. The calmodulin inhibitor, chloropromazine (6.10(-5) M), strongly inhibited the enhancing effect of calcium influx on ACh-induced chloride current in LP11 and RBc4 neurons, but it had a weak influence on the effect of vitamin E. 6. The effect of vitamin E on surface distribution of functional ACh receptors in LP11 and RBc4 neurons was found. 7. Application of 10(-4) to 10(-6) M vitamin E (DL-alpha-tocopherol) triggered mechanisms, which after a 5 to 45-min period lead to appearance of functional ACh receptors on the parts of neuronal soma, which were further from the axon. 8. Arachidonic acid (vitamin F) evoked a disappearance of functional ACh receptors, which were activated by vitamin E.  相似文献   

9.
For many years the role of vitamin E (α-tocopherol) in human nutrition was uncertain, but it is now recognised that this fat soluble vitamin is necessary for normal neurological structure and function. The evidence came initially from patients with abetalipoproteinaemia, then from patients with other chronic and severe fat malabsorptive states, from patients with an isolated deficiency of vitamin E without generalised fat malabsorption, and from comparative neuropathological studies in vitamin E deficient man, monkey and rat. Severe and chronic vitamin E deficiency in the different patient groups resulted in a characteristic neurological disorder which progressed to crippling and blindness. Early and appropriate supplementation with vitamin E can prevent the development of all the neurological signs and symptoms, and treatment of patients with established lesions invariably halts and in some cases can reverse the neuropathy. These clinical and pathological findings raise a number of basic questions regarding the function of vitamin E in neural tissues which are currently being addressed in an animal model.  相似文献   

10.
《BMJ (Clinical research ed.)》1949,2(4641):1399-1400
  相似文献   

11.
The aim of this paper is to provide an overview of vitamin E metabolism. The topics covered include: major classes of vitamin E metabolites; their production pathways and route of excretion; possible biological activities of vitamin E metabolites; and use of vitamin E metabolites as markers of oxidant generation. Recent investigations into vitamin E metabolism have also highlighted important new areas of research, such as the potential for high dose vitamin E supplementation to interfere with drug metabolism, as well as alternative methods to alter vitamin E bioavailability in vivo. These issues will also be discussed in the review.  相似文献   

12.
Vitamin E.     
P. D. Grant 《CMAJ》1982,126(10):1153
  相似文献   

13.
14.
The literature data concerning the participation of tocopherol in apoptosis are discussed. Acting as antioxidant this vitamin exerts a complex effect on apoptosis mechanisms. Its action on this process is caused by involvement of some different mechanisms transducing the apoptotic signal. Among them are caspase and Fas-receptor activation, sphingosine metabolism, processes carried out in nuclei and mitochondria and signal transduction pathways. The specific mechanisms connected with interaction of this vitamin with tocopherol-binding proteins may be also involved in this vitamin action.  相似文献   

15.
16.
17.
18.
Vitamin E: non-antioxidant roles   总被引:33,自引:0,他引:33  
  相似文献   

19.
Vitamin E is essential for neurological function. This fact, together with a growing body of evidence indicating that neurodegenerative processes are associated with oxidative stress, lead to the convincing idea that several neurological disorders may be prevented and/or cured by the antioxidant properties of vitamin E.

In this review, some aspects related to the role of vitamin E against Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and ataxia with vitamin E deficiency will be presented.  相似文献   


20.
Vitamin E bioavailability in humans   总被引:1,自引:0,他引:1  
It is important to understand factors that can influence vitamin E bioavailability, particularly in populations with increased risk of coronary heart disease such as cigarette smokers. There is also a need to clarify the bioavailability of natural and synthetic vitamin E, which is currently a subject of some controversy. Previous studies using a competitive uptake approach have found bioavailability ratios of natural:synthetic vitamin E close to 2:1, differing from the accepted biopotency ratio of 1.36:1. We used a non-competitive uptake approach to compare the plasma biokinetics of deuterated natural (RRR) and synthetic (all rac) alpha-tocopheryl acetate in smokers and non-smokers. The study was comprised of two 4-week treatments with 400 mg/d (either RRR-alpha-tocopheryl or all rac-alpha-tocopheryl acetates), with a 12-week washout period between. Prior to and after each treatment subjects underwent a 48 h biokinetic protocol with 150 mg deuterated alpha-tocopheryl acetate in either the RRR or all rac form. Smokers had a lower deuterated alpha-tocopherol AUC than did non-smokers following administration of RRR, but there was no difference following administration of all rac. The ratio RRR:all rac from AUCs and C(max) was 1.3:1 in non-smokers and 0.9:1 in smokers. Following vitamin E supplementation, deuterated tocopherol AUCs were lower in both groups. These data suggest that non-smokers and smokers differ in their handling of vitamin E, that the relative bioavailability of natural and synthetic vitamin E is close to the currently accepted biopotency ratio of 1.36:1, and that following supplementation the ability of the plasma to take up newly absorbed vitamin E is decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号