首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
A sensitive method for the determination of Delta(9)-tetrahydrocannabinol and its metabolites, 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid and 11-hydroxy-Delta(9)-tetrahydrocannabinol, in rat and guinea pig plasma was developed using high-performance liquid chromatographic separation with electrospray ionization mass spectrometry detection and a simple liquid-liquid extraction technique. The mean recoveries for Delta(9)-tetrahydrocannabinol, 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid, and 11-hydroxy-Delta(9)-tetrahydrocannabinol were 96, 92, and 85%, respectively. The lower limit of quantification (LLOQ) for all three compounds was 5 ng/ml and the limit of detection (LOD) was 2 ng/ml. This assay method utilizes the increased sensitivity and selectivity of mass spectrometric (MS) detection and a simple extraction step for the determination of Delta(9)-tetrahydrocannabinol and its metabolites in plasma, and thus yields a more efficient pharmacokinetic analysis method than has previously been described.  相似文献   

2.
This paper presents a GC-MS confirmation method, based on large-volume programmed-temperature vaporisation (PTV) injection, for the determination of cannabinoids in plasma samples (or whole blood) with deuterium-labelled internal standards using only 25 microl of biological fluid. The analytes, Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Delta 9-tetrahydrocannabinol (THC-COOH), were enriched by means of solid-phase extraction cartridges containing octadecyl-bonded silica and were, subsequently, methylated. A 20 microl aliquot of an extract in hexane was injected into a PTV in solvent split mode. Method development and the results of the analyses of standard reference material and real samples are presented and discussed. This micro-method is precise and sensitive enough to assess relevant cannabinoid levels in human blood for forensic investigations as well as for clinical applications.  相似文献   

3.
Cannabis is considered to be the most widely abused illicit drug in Europe. Consequently, sensitive and specific analytical methods are needed for forensic purposes and for cannabinoid pharmacokinetic and pharmacodynamic studies. A simple, rapid and highly sensitive and specific method for the extraction and quantification of Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy- Delta(9)-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy- Delta(9)-tetrahydrocannabinol (THC-COOH) in blood is presented. The method was fully validated according to international guidelines and comprises simultaneous liquid-liquid extraction (LLE) of the three analytes with hexane:ethyl acetate (90:10, v/v) into a single eluant followed by separation and quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chromatographic separation was achieved using a XBridge C(18) column eluted isocratically with methanol:0.1% formic acid (80:20, v/v). Selectivity of the method was achieved by a combination of retention time, and two precursor-product ion transitions. The use of the LLE was demonstrated to be highly effective and led to significant decreases in the interferences present in the matrix. Validation of the method was performed using 250 microL of blood. The method was linear over the range investigated (0.5-40 microg/L for THC, 1-40 microg/L for 11-OH-THC, and 2-160 microg/L for THC-COOH) with excellent intra-assay and inter-assay precision; relative standard deviations (RSDs) were <12% for THC and 11-OH-THC and <8% for THC-COOH for certified quality control samples. The lower limit of quantification was fixed at the lowest calibrator in the linearity experiments. No instability was observed after repeated freezing and thawing or in processed samples. The method was subsequently applied to 63 authentic blood samples obtained from toxicology cases. The validation and actual sample analysis results show that this method is rugged, precise, accurate, and well suited for routine analysis.  相似文献   

4.
Determination of eprosartan in human plasma and urine by LC/MS/MS   总被引:1,自引:0,他引:1  
A protein precipitation, liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the determination of eprosartan in human plasma and urine. The solvent system also served as a protein precipitation reagent. The chromatographic separation was achieved on a CAPCELL PAK C18 column (50 mmx2.0 mm, 5 microm, Shiseido). A mobile phase was consisted of 0.5% formic acid in water and 0.5% formic acid in acetonitrile (72:28). Detection was by positive ion electrospray tandem mass spectrometry on a Sciex API3000. The standard curves, which ranged from 5 to 2000 ng/mL in human plasma and from 0.25 to 50 microg/mL in urine, were fitted to a 1/x weighted quadratic regression model. The method proved to be accurate, specific and sensitive enough to be successfully applied to a pharmacokinetic study.  相似文献   

5.
Two liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods are described, one for the quantitative determination of risperidone and the enantiomers of its active metabolite 9-hydroxyrisperidone (paliperidone) in human plasma and the other for the determination of the enantiomers of 9-hydroxyrisperidone in human urine. The plasma method is based on solid-phase extraction of 200 microl of sample on a mixed-mode sorbent, followed by separation on a cellulose-based LC column with a 13.5-min mobile phase gradient of hexane, isopropanol and ethanol. After post-column addition of 10 mM ammonium acetate in ethanol/water, detection takes place by ion-spray tandem mass spectrometry in the positive ion mode. Method validation results show that the method is sufficiently selective towards the enantiomers of 7-hydroxyrisperidone and capable of quantifying the analytes with good precision and accuracy in the concentration range of 0.2-100 ng/ml. An accelerated (run time of 4.3 min) and equally valid method for the enantiomers of 9-hydroxyrisperidone alone in plasma is obtained by increasing the mobile phase flow-rate from 1.0 to 2.0 ml/min and slightly adapting the gradient conditions. The urine method is based on the same solid-phase extraction and chromatographic approach as the accelerated plasma method. Using 100 microl of sample, (+)- and (-)-9-hydroxyrisperidone can be quantified in the concentration range 1-2000 ng/ml. The accelerated method for plasma and the method for urine can be used only when paliperidone is administered instead of risperidone, as there is insufficient separation of the 9-hydroxy enantiomers from the 7-hydroxy enantiomers, the latter ones being present only after risperidone administration.  相似文献   

6.
Cannabinoids, the active components of marihuana, exert a variety of effects in humans. Many of these effects are mediated by binding to two types of cannabinoid receptor, CB1 and CB2. Although CB1 is located mainly in the central nervous system, it may also be found in peripheral tissues. Here, we study the effect of cannabinoids in the production of nerve growth factor by the prostate tumor cell line PC-3. We show that addition of Delta(9)-tetrahydrocannabinol to PC-3 cells stimulated nerve growth factor production in a dose-dependent and time-dependent manner. Maximal effect was observed at 0.1 microM Delta(9)-tetrahydrocannabinol and 72 h of treatment. Stimulation was reversed by the CB1 antagonists AM 251 and SR 1411716A. Pre-treatment of cells with pertussis toxin also prevented the effect promoted by Delta(9)-tetrahydrocannabinol. These results indicate that Delta(9)-tetrahydrocannabinol stimulation of nerve growth factor production in these cells was mediated by the cannabinoid CB1 receptor. The implication of Raf-1 activation in the mode of action of Delta(9)-tetrahydrocannabinol is also suggested.  相似文献   

7.
To clarify the mechanism by which Delta9-tetrahydrocannabinol, a major psychoactive component of marijuana, impairs spatial memory in the 8-arm radial maze in rats via the cholinergic system, we used two acetylcholinesterase inhibitors, physostigmine and tetrahydroaminoacridine. Moreover, we examined the effect of Delta9-tetrahydrocannabinol on acetylcholine release in the frontal cortex and dorsal and ventral hippocampus using in vivo microdialysis. Physostigmine (0.01-0.05 mg/kg, i.p.) and tetrahydroaminoacridine (1-5 mg/kg, p.o.) improved the impairment of spatial memory induced by Delta9-tetrahydrocannabinol (6 mg/kg, i.p.) in the 8-arm radial maze. Delta9-tetrahydrocannabinol (6 mg/kg, i.p.) produced a significant decrease in acetylcholine release in the dorsal hippocampus as assessed by microdialysis. Moreover, tetrahydroaminoacridine at a dose of 1 mg/kg, which improved the impairment of spatial memory, reversed the decrease in acetylcholine release induced by Delta9-tetrahydrocannabinol in the dorsal hippocampus during 60-120 min after the Delta9-tetrahydrocannabinol injection. These findings suggest that inhibition of the cholinergic pathway by reduced acetylcholine release is one of the means by which Delta9-tetrahydrocannabinol impairs spatial memory in the 8-arm radial maze.  相似文献   

8.
A rapid, sensitive, and specific ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) assay method for simultaneous determination of 13 benzodiazepine compounds in human urine was developed and validated. Aliquots of 0.5 mL of urine specimens were used for the analysis and the benzodiazepines were extracted by single step methanol (containing 0.2% formic acid) precipitation and then separated on a BEH C18 (50 mm × 2.1 mm, 1.7 μm) analytical column with the temperature maintained at 45°C. The mobile phases consisted of methanol and water (both containing 0.2% formic acid) and the flow rate was 0.4 mL/min. The TQ detector, equipped with an electrospray ionization ion source, was set up with a positive mode. The acquisitions were performed in multiple-reaction monitoring (MRM) and the limit of quantification was 20 ng/mL for all of the 13 compounds. The low limits of detections (LODs) of the benzodiazepines in this method were between 0.5 and 2 ng/mL. The chromatographic separation time was 4 min and calibration curves in human urine were generated over the range of 20-2000 ng/mL. The method validation parameters such as accuracy, precision, carryover, recovery, stability, and specificity for all of the 13 compounds were within the acceptable range. This method is suitable for the high throughput screening of benzodiazepines in clinical laboratories.  相似文献   

9.
A direct liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method for measurement of urinary Delta(9)-tetrahydrocannabinol carboxylic acid (THCA) was developed. The method involved dilution of the urine sample with water containing (2)H(9)-deuterated analogue as internal standard, hydrolysis with ammonia, reversed phase chromatography using a Waters ultra-performance liquid chromatography (UPLC) equipment with gradient elution, negative electrospray ionization, and monitoring of two product ions in selected reaction monitoring mode. The measuring range was 2-1000 ng/mL for THCA, and the intra- and inter-assay imprecision, expressed as the coefficient of variation, was below 5%. Influence from urine matrix on ionization efficiency was noted in infusion experiments, but was compensated for by the internal standard. Comparison with established gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry methods in authentic patient samples demonstrated accuracy in both qualitative and quantitative results. A small difference in mean ratios (~15%) may be explained by the use of different hydrolysis procedures between methods. In conclusion, the high efficiency LC-MS/MS method was capable of accurately identify and quantify THCA in urine with a capacity of 14 samples per hour.  相似文献   

10.
delta 9-Tetrahydrocannabinol and two of its metabolites, 11-hydroxy-delta 9-tetrahydrocannabinol and 11-nor-9-carboxy-delta 9-tetrahydrocannabinol, can be measured in a single 1-ml sample of blood, plasma, or urine by a new assay which combines a relatively rapid extraction procedure with capillary column gas chromatography and negative ion chemical ionization mass spectrometry. Deuterium-labeled analogs of each cannabinoid are added to the physiological specimen as internal standards. Two extracts are obtained from each sample: a neutral fraction containing delta 9-tetrahydrocannabinol and 11-hydroxy-delta 9-tetrahydrocannabinol, and an acid fraction containing 11-nor-9-carboxy-delta 9-tetrahydrocannabinol. The neutral fraction is derivatized by treatment with trifluoroacetic anhydride; the acid fraction is first treated with BF3-methanol followed by reaction with trifluoroacetic anhydride. Under electron-capture chemical ionization conditions the derivatized delta 9-tetrahydrocannabinol and 11-nor-9-carboxy-delta 9-tetrahydrocannabinol give abundant molecular anions ideally suited for selected ion monitoring. The negative ion chemical ionization spectrum of the HO-THC-trifluoroacetate shows no molecular anion. Consequently, quantitation of the hydroxy metabolite is achieved by monitoring a fragment ion formed by loss of CF3CO2 from its molecular anion. The limits of reliable measurement are judged to be 0.1 ng ml-1 for 11-nor-9-carboxy-delta 9-tetrahydrocannabinol, 0.2 ng ml-1 for delta 9-tetrahydrocannabinol and 0.5 ng ml-1 for 11-hydroxy-delta 9-tetrahydrocannabinol. Four examples are given of the application of the assay to the analysis of specimens of medico-legal importance.  相似文献   

11.
Delta9-tetrahydrocannabinol and other cannabinoids exert pro-apoptotic actions in tumor cells via the CB2 cannabinoid receptor. However, the molecular mechanism involved in this effect has remained elusive. Here we used the human leukemia cell line Jurkat-that expresses CB2 as the unique CB receptor-to investigate this mechanism. Our results show that incubation with the selective CB2 antagonist SR144528 abrogated the pro-apoptotic effect of Delta9-tetrahydrocannabinol. Cannabinoid treatment led to a CB2 receptor-dependent stimulation of ceramide biosynthesis and inhibition of this pathway prevented Delta9-tetrahydrocannabinol-induced mitochondrial hypopolarization and cytochrome c release, indicating that ceramide acts at a pre-mitochondrial level. Inhibition of ceramide synthesis de novo also prevented caspase activation and apoptosis. Caspase 8 activation-an event typically related with the extrinsic apoptotic pathway-was also evident in this model. However, activation of this protease was post-mitochondrial since (i) a pan-caspase inhibitor as well as a selective caspase 8 inhibitor were unable to prevent Delta9-tetrahydrocannabinol-induced loss of mitochondrial-membrane transmembrane potential, and (ii) cannabinoid-induced caspase 8 activation was not observed in Bcl-xL over-expressing cells. In summary, results presented here show that CB2 receptor activation signals apoptosis via a ceramide-dependent stimulation of the mitochondrial intrinsic pathway.  相似文献   

12.
A validated method for the quantification of Delta(9)-tetrahydrocannabinol (THC) and its main metabolites 11-hydroxy-tetrahydrocannabinol (OH-THC) and 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH) in serum is presented. The substances were isolated by solid-phase extraction, derivatised by methylation, and analysed by means of GC-MS in the selected ion monitoring mode. Quantitation was achieved by the addition of deuterated analogues as internal standards. The method was linear up to 10 ng/ml for THC and OH-THC, and up to 50 ng/ml for THC-COOH. The limits of quantification were 0.62 ng/ml for THC, 0.68 ng/ml for OH-THC and 3.35 ng/ml for THC-COOH. The limits of detection for the least intensive ions were 0.52 ng/ml for THC, 0.49 ng/ml for OH-THC and 0.65 ng/ml for THC-COOH. The method was validated according to the requirements of the Journal of Chromatography B. The method has been routinely used on samples from drivers suspected of "driving under the influence". In addition to the forensic application, a cross-validation was carried out by applying the method developed for serum to human liver microsomal preparation samples.  相似文献   

13.
Analysis of Delta(9)tetrahydrocannabinol (Delta(9)THC) and its metabolites in biological samples is of great relevance for forensic purposes. In the case of oral fluid (OF), the analysis should determine Delta(9)THC, whereas in urine, it detects the inactive metabolite tetrahydrocannabinol carboxylic acid (THC-COOH). Most laboratories analyze Delta(9)THC in such samples using GC-MS methods, but these procedures are time-consuming and involve unavoidable previous extraction and derivatization. No data is yet available on the application of liquid chromatography-mass-spectrometry to detect Delta(9)THC in oral fluid. We report a validation method in which the Delta(9)THC is isolated from oral fluid by a simple liquid-liquid extraction with hexane and subsequently analyzed by liquid chromatography-mass-spectrometry. The method here reported for the determination of Delta(9)THC in oral fluid only requires 200 microl of sample and achieves limits of detection of 2 ng/ml, and has been used to analyze oral fluid samples collected from current drug users.  相似文献   

14.
This paper describes a new iodine-125 radioimmunoassay of 9alpha ,11beta-PGF2, and its use for the determination of urinary 9alpha,11beta-prostaglandin F2 after a selective one-step solid-phase extraction. The newly reported immunoassay is based on the use of 125I-tyrosyl methyl ester derivative of 9alpha,11beta-PGF2 and specific polyclonal antibody raised in rabbits.The assay detected as lowas 0.85 pg/tube 9alpha,11beta-PGF2, and the antibodyshowed lessthan 0.01 cross-reaction with PGF-ring metabolites (e.g., 8-iso-PGF2alpha, PGF2alpha 2,3-dinor-6-keto-PGF1alpha, and 5 more PGF-ring compounds). Both the intra-assay, and inter-assay CVs were lessthan 20% for internal controls containing low, medium and high concentrations of 9alpha,11beta-PGF2. Immuno-HPLC analysis showed a very low ratio of specific immunoreactivity in both non-extracted urine (6.5%), and in urine extracted on C18-silicacartridge (14.8%). By contrast, approximately 80% specific immunoreactivity could be achieved by using C2-silicaas the sorbent, acetonitrile: water (15:85, v/v) as wash solvent, and ethyl acetate as eluent of 9alpha,11beta-PGF2.This extraction procedure enabled a reasonably high extraction efficiency of 80.4 +/- 0.855 (mean +/- SEM, n=82), as determined by 3H-9alpha,11beta-PGF2. The new SPE/RIA method was applied for the determination of urinary 9alpha,11beta-PGF2 values in 50 healthy human volunteers. For the concentration and for the excretion rate 37.52 +/- 4.61 pg/ml (mean +/- SEM), and 3.50 + 0.35 ng/mmol creatinine (mean +/- SEM), respectively, was measured.The specificity of the SPE/RIA method was supported by the observed 69% decrease in 9alpha, 11beta-PGF2 excretion rate after acetylsalicylic acid treatment. The effect of nicotinic acid, a PGD2-stimulatory agent, was monitored by the urinary excretion of 9alpha ,11beta-PGF2 in 6 patients, by using the new SPE/RIA method. In patients responding with flushing symptoms nicotinic acid induced an increase of the urinary excretion of 9alpha,11beta-PGF2 in the range between 11% and 187%. In summary, the combination of the newly developed specific [125I] radioimmunoassay with solid-phase extraction on C2-silica cartridges enables the specific, sensitive, and reliable determination of 9alpha,11beta-PGF2 in human urine without the need for further laborious chromatographic purification before radioimmunoassay.  相似文献   

15.
For the sensitive and selective determination of zeranol, taleranol, α-zearalenol, β-zearalenol and zearalenone in animal urine and tissue a LC-MS/MS method has been developed. Sample preparation included extraction of meat samples and enzymatic digest of urine samples followed by solid-phase extraction with RP-18 columns for sample clean-up. Mass spectrometric determination was carried out with an atmospheric pressure chemical ionisation interface (APCI) in the multi-reaction monitoring mode (MRM). Using the negative ion mode detection limits between 0.1 and 0.5 ppb and determination limits between 0.5 and 1 ppb could be achieved. With zearalanone as internal standard, a linear range between 0.5 (1.0) and 100 ppb in urine samples (cow; pig) and between 1 and 100 ppb in meat samples (cow, calf, pig) could be established. Depending on the biological matrix and analyte standard deviations were below 8.2 %, with recovery rates between 86 and 102 % in spiked samples. The applicability of the method was demonstrated via several contaminated cow and pig urine samples.  相似文献   

16.
A quantitative analytical method using automated on-line solid phase extraction (SPE) and liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) for the determination of 8-OHdG (8-hydroxy-2'-deoxyguanosine) in human plasma was developed and validated. A one-step membrane extraction method for the plasma sample preparation and a C18 SPE column with simple extraction and purification were used for the on-line extraction. A C18 column was employed for LC separation and ESI-MS/MS was utilized for detection. (15)N(5)-8-OHdG ((15)N(5)-8-hydroxy-2'-deoxyguanosine) was used as an internal standard for quantitative determination. The extraction, clean-up and analysis procedures were controlled by a fully automated six-port switch valve as one strategy to reduce the matrix effect and simultaneously improve detection sensitivity. Identification and quantification were based on the following transitions: m/z 284→168 for 8-OHdG and m/z 289→173 for (15)N(5)-8-OHdG. Satisfactory recovery was obtained, and the recovery ranged from 95.1 to 106.1% at trace levels in human plasma and urine, with a CV lower than 5.4%. Values for intraday and interday precision were between 2.3 and 6.8% for plasma and between 2.7 and 4.5% for urine, respectively. Values for the method accuracy of intraday and interday assays ranged from 93.0 and 100.5% for plasma and 110.2 and 119.4% for urine, respectively. The limits of detection (LOD) and LOQ were 0.008 ng/mL and 0.02 ng/mL, respectively.The applicability of this newly developed method was demonstrated by analysis of human plasma samples for an evaluation of the future risk of oxidative stress status in human exposure to nanoparticles and other diseases.  相似文献   

17.
Urinary S-phenylmercapturic acid (SPMA) is a biomarker suggested by the American Conference of Governmental Industrial Hygienists (ACGIH) for assessing occupational exposure to benzene. A possible cause of the miscorrelation between environmental monitoring and biological monitoring for benzene exposure, which many authors complain about, is the existence of a urinary metabolite that turns into SPMA by acid hydrolysis. Forty urine samples were tested to determine which concentration value would correspond to the ACGIH Biological Exposure Index (BEI) of 25 µg g-1 creatinine if exposure assessment was based on the determination of SPMA after quantitative hydrolysis of its precursor. An aliquot of each sample was hydrolysed with 9 M H2SO4, a second one was brought to pH 2 and a third one was used as it was (free SPMA). SPMA was determined by high-performance liquid chromatography/tandem mass spectrometric technique (HPLC/MS/MS) using an internal standard. The analytical method was validated in the range 0.5-50 µg l-1. The average SPMA in pH 2 samples is 45-60% of the total, while free SPMA varies from 1% to 66%. The hydrolysis of pre-SPMA reduces the likelihood of variability in the results by reducing pH differences in urine samples and increasing the amount of measured SPMA. The BEI limit value would be about 50 µg g-1 creatinine.  相似文献   

18.
A new method for determination of Delta(9)-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in hair based on alkaline hair hydrolysis, extraction by iso-octane, combined derivatization with N,O-bis-(trimethylsilyl)-trifluoroacetamide and headspace solid phase microextraction of the extract residue, and gas chromatography-mass spectrometry was developed and evaluated. The limits of detection of the three compounds were 0.01-0.02 ng/mg. The method was routinely applied to more than 250 hair samples. In 77 positive samples, the concentrations ranged from LOD to 4.2 ng/mg for THC (mean 0.49 ng/mg), to 12.1 ng/mg for CBD (mean 0.37 ng/mg) and to 0.85 ng/mg for CBN (mean 0.12 ng/mg) using a sample amount of 30 mg. The frequently observed increase of the segmental drug concentrations from proximal to distal is explained by progressive accumulation in the hair shaft from sebum or side stream smoke.  相似文献   

19.
Tetramethylene disulfotetramine (tetramine) is a rodenticide associated with numerous poisonings was extracted and quantified in human urine using both gas chromatography/mass spectrometry (GC/MS) and GC/tandem mass spectrometry (MS/MS). 1200 μL samples were prepared using a 13C4-labeled internal standard, a 96-well format, and a polydivinyl-benzene solid phase extraction sorbent bed. Relative extraction recovery was greater than 80% at 100 ng/mL. Following extraction, samples were preconcentrated by evaporation at 60 °C, and reconstituted in 50 μL acetonitrile. One-microliter was injected in a splitless mode on both instruments similarly equipped with 30 m × 0.25 mm × 25 μm, 5% phenyl-methylpolysiloxane gas chromatography columns. A quantification ion and a confirmation ion (GC/MS) or analogous selected reaction monitoring transitions (GC/MS/MS) were integrated for all reported results. The method was characterized for precision (5.92–13.4%) and accuracy (96.4–111%) using tetramine-enriched human urine pools between 5 and 250 ng/mL. The method limit of detection was calculated to be 2.34 and 3.87 ng/mL for GC/MS and GC/MS/MS, respectively. A reference range of 100 unexposed human urine samples was analyzed for potential endogenous interferences on both instruments—none were detected. Based on previous literature values for tetramine poisonings, this urinary method should be suitable for measuring low, moderate, and severe tetramine exposures.  相似文献   

20.
Abstract

Urinary S-phenylmercapturic acid (SPMA) is a biomarker suggested by the American Conference of Governmental Industrial Hygienists (ACGIH) for assessing occupational exposure to benzene. A possible cause of the miscorrelation between environmental monitoring and biological monitoring for benzene exposure, which many authors complain about, is the existence of a urinary metabolite that turns into SPMA by acid hydrolysis. Forty urine samples were tested to determine which concentration value would correspond to the ACGIH Biological Exposure Index (BEI) of 25 µg g?1 creatinine if exposure assessment was based on the determination of SPMA after quantitative hydrolysis of its precursor. An aliquot of each sample was hydrolysed with 9 M H2SO4, a second one was brought to pH 2 and a third one was used as it was (free SPMA). SPMA was determined by high-performance liquid chromatography/tandem mass spectrometric technique (HPLC/MS/MS) using an internal standard. The analytical method was validated in the range 0.5–50 µg l?1. The average SPMA in pH 2 samples is 45–60% of the total, while free SPMA varies from 1% to 66%. The hydrolysis of pre-SPMA reduces the likelihood of variability in the results by reducing pH differences in urine samples and increasing the amount of measured SPMA. The BEI limit value would be about 50 µg g?1 creatinine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号