首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mammalian sperm metabolism: oxygen and sugar, friend and foe   总被引:1,自引:0,他引:1  
Mammalian spermatozoa expend energy, generated as intracellular ATP, largely on motility. If the sperm cell cannot swim by use of its flagellar motion, it cannot fertilize the egg. Studies of the means by which this energy is generated span a period of six decades. This review gives an overview of these studies, which demonstrate that both mitochondrial oxidative phosphorylation, for which oxygen is friend, and glycolysis, for which sugar is friend, can provide the energy, independent of one another. In mouse sperm, glycolysis appears to be the dominant pathway; in bull sperm, oxidative phosphorylation is the predominant pathway. In the case of bull sperm, the high activity of the glycolytic pathway would maintain the intracellular pH too low to allow sperm capacitation; here sugar is enemy. The cow's oviduct has very low glucose concentration, thus allowing capacitation to go forward. The choice of the pathway of energy generation in vivo is set by the conditions in the oviduct of the conspecific female. The phospholipids of the sperm plasma membrane have a high content of polyunsaturated fatty acids represented in their acyl moieties, rendering them highly susceptible to lipid peroxidation; in this case oxygen is enemy. But the susceptibility of the sperm membrane to lethal damage by lipid peroxidation allows the female oviduct to dispose of sperm that have overstayed their welcome, and so keep in balance sperm access to the egg and sperm removal once this has occurred.  相似文献   

2.
3.
4.
5.
Airway wall remodeling is well documented for asthmatic airways and is believed to result from chronic and/or short-term exposure to inflammatory stimuli. Airway wall remodeling can contribute to airway narrowing as well as to the airway hyperresponsiveness, which is a characteristic abnormality in asthma. However, the potential for airway narrowing could be much worse if it were not for some of the protective effects of remodeling that may help to limit airway narrowing in asthmatic patients. This minireview discusses the evidence for airway wall remodeling and its effects, friend and/or foe, on airway narrowing in asthmatic patients.  相似文献   

6.
7.
8.
Nardilysin is a metalloprotease that cleaves peptides, such as dynorphin-A, α-neoendorphin, and glucagon, at the N-terminus of arginine and lysine residues in dibasic moieties. It has various functionally important molecular interaction partners (heparin-binding epidermal growth factor-like growth factor, tumour necrosis factor-α-converting enzyme, neuregulin 1, beta-secretase 1, malate dehydrogenase, P42IP4/centaurin-α1, the histone H3 dimethyl Lys4, and others) and is involved in a plethora of normal brain functions. Less is known about possible implications of nardilysin for brain diseases. This review, which includes some of our own recent findings, attempts to summarize the current knowledge on possible roles of nardilysin in Alzheimer disease, Down syndrome, schizophrenia, mood disorders, alcohol abuse, heroin addiction, and cancer. We herein show that nardilysin is a Janus-faced enzyme with regard to brain pathology, being probably neuropathogenic in some diseases, but neuroprotective in others.  相似文献   

9.
The Rel/NF-kappa B family: friend and foe   总被引:21,自引:0,他引:21  
  相似文献   

10.
11.
Coral bleaching is a major concern to researchers, conservationists and the general public worldwide. To date, much of the high profile attention for bleaching has coincided with major environmental impacts and for many the term coral bleaching is synonymously associated with coral mortality (so‐called ‘lethal’ bleaching episodes). While this synonymous association has undoubtedly been key in raising public support, it carries unfair representation: nonlethal bleaching is, and always has been, a phenomenon that effectively occurs regularly in nature as corals acclimatize to regular periodic changes in growth environment (days, seasons etc). In addition, corals can exhibit sublethal bleaching during extreme environmental conditions whereby mortality does not occur and corals can potentially subsequently recover once ambient environmental conditions return. Perhaps not surprisingly it is the frequency and extent of these non and sublethal processes that yield key evidence as to how coral species and reef systems will likely withstand environmental and thus climatic change. Observations of non and sublethal bleaching (and subsequent recovery) are arguably not as readily reported as those of lethal bleaching since (1) the convenient tools used to quantify bleaching yield major ambiguity (and hence high potential for misidentification) as to the severity of bleaching; and (2) lethal bleaching events inevitably receive higher profile (media) attention and so are more readily reported. Under‐representation of non and sublethal bleaching signs may over‐classify the severity of bleaching, under‐estimate the potential resilience of reefs against environmental change, and thus ultimately limit (if not depreciate) the validity and effectiveness of reef management policies and practices. While bleaching induced coral mortality must remain our key concern it must be better placed within the context of bleaching signs that do not result in a long‐term loss of reef viability.  相似文献   

12.
13.
High-mobility group box 1 (HMGB1) protein: friend and foe   总被引:11,自引:0,他引:11  
  相似文献   

14.
15.
Abstract

The oxidative theory of aging states (loosely) that the cumulative effects of oxidant damage may determine both the onset of senescence and time of death. A small avalanche of papers is now appearing, most of which generally support the theory. A recent one published in Nature is particularly notable. Using the small (~900 cell) metazoan Caenorhabditis elegans, Taub and colleagues1 have found that three mutations associated with increased adult lifespan cause enhanced expression of an unusual cytosolic catalase (CTL-1). Furthermore, deficiency of CTL-1 caused by a nonsense mutation shortens the adult life span of these animals. Interestingly, these progeric mutants also show an abnormal accumulation of lipofuscin (or ceroid depending on the reader's bent) toward the end of life.  相似文献   

16.
Autophagy is the mechanism by which cells consume parts of themselves to survive starvation and stress. This self-cannibalization limits cell death and tissue inflammation, recycles energy and biosynthetic substrates and removes damaged proteins and organelles, accumulation of which is toxic. In normal tissues, autophagy-mediated damage mitigation may suppress tumorigenesis, while in advanced tumors macromolecular recycling may support survival by buffering metabolic demand under stress. As a result, autophagy-activation in normal cells may suppress tumorigenesis, while autophagy inhibition may be beneficial for the therapy of established tumors. The mechanisms by which autophagy supports cancer cell metabolism are slowly emerging. As cancer is being increasingly recognized as a metabolic disease, how autophagy-mediated catabolism impacts cellular and mammalian metabolism and tumor growth is of great interest. Most cancer therapeutics induce autophagy, either directly by modulating signaling pathways that control autophagy in the case of many targeted therapies, or indirectly in the case of cytotoxic therapy. However, the functional consequence of autophagy induction in the context of cancer therapy is not yet clear. A better understanding of how autophagy modulates cell metabolism under various cellular stresses and the consequences of this on tumorigenesis will help develop better therapeutic strategies against cancer prevention and treatment.  相似文献   

17.
Mammalian odorant binding proteins   总被引:13,自引:0,他引:13  
Odorant binding proteins (OBPs) pertain to one of the most abundant classes of proteins found in the olfactory apparatus. OBPs are a sub-class of lipocalins, defined by their property of reversibly binding volatile chemicals, that we call 'odorants'. Numerous sequences of OBPs are now available, derived from protein sequencing from nasal mucus material, or from DNA sequences. The structural knowledge of OBPs has been improved too in recent years, with the availability of two X-ray structures. The physiological role of OBPs remains, however, essentially hypothetical, and most probably, not linked to a function of odor transport. The present knowledge on OBP biochemistry, sequence and structure will be examined here in relation to the different functional hypotheses proposed for OBPs.  相似文献   

18.
Mucosal surfaces that line our gastrointestinal tract are continuously exposed to trillions of bacteria that form a symbiotic relationship and impact host health and disease. It is only beginning to be understood that the cross-talk between the host and microbiome involve dynamic changes in commensal bacterial population, secretion, and absorption of metabolites between the host and microbiome. As emerging evidence implicates dysbiosis of gut microbiota in the pathology and progression of various diseases such as inflammatory bowel disease, obesity, and allergy, conventional treatments that either overlook the microbiome in the mechanism of action, or eliminate vast populations of microbes via wide-spectrum antibiotics need to be reconsidered. It is also becoming clear the microbiome can influence the body’s response to therapeutic treatments for cancers. As such, targeting the microbiome as treatment has garnered much recent attention and excitement from numerous research labs and biotechnology companies. Treatments range from fecal microbial transplantation to precision-guided molecular approaches. Here, we survey recent progress in the development of innovative therapeutics that target the microbiome to treat disease, and highlight key findings in the interplay between host microbes and therapy.  相似文献   

19.
The normal intestinal microflora (microbiota) represents a complex, dynamic, and diverse collection of microorganisms, which usually inhabit the gastrointestinal tract. Normally, between this flora and the human host a mutually beneficial long-term symbiotic relationship is established, where the host contributes essential nutrients necessary for the survival of the microbiota and the latter fulfils multiple roles in host nutrition and development. Several achievements have recently converged to renew interest in studying the normal gut microbiota: the development of molecular methods of studying the microbial communities, the improved understanding of host-microbe interactions in health and disease, and the potential for therapeutic manipulation of the microbiota. We present recent data concerning the molecular technologies of studying the microbiota and new findings regarding the composition of the normal flora. We underline the beneficial activities of the gut flora on the human host. We emphasize the recent findings in the alterations of the microbiota in various medical conditions (celiac disease, irritable bowel syndrome, obesity, colorectal cancer, allergic disorders, and especially inflammatory bowel diseases). The results of these new studies suggest that changes of the microbiota could be linked to the etiopathogenesis of these diseases. These outstanding findings could be used for further diagnostic tools and/or therapy.  相似文献   

20.
Mammalian mitochondrial IAP binding proteins   总被引:24,自引:0,他引:24  
Four mitochondrial proteins have been identified that immunoprecipitate with the mammalian inhibitor of apoptosis (IAP) protein XIAP. Each of them interacts via a processed amino terminus that resembles those of the insect pro-apoptotic IAP binding proteins Grim, HID, Reaper, and Sickle. Two, Diablo/Smac and HrtA2/Omi, have been extensively characterized. Both Diablo and HtrA2 can bind to IAPs and promote apoptosis when over-expressed in transfected cells, but unlike the insect IAP antagonists, to date there is scant evidence that they are important regulators of apoptosis in more physiological circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号