首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
胸腺细胞在胸腺外凋亡的形态学证据   总被引:1,自引:0,他引:1  
In vitro thymus explants culture designed in this paper can mimic the thymic microenvironment as it were in vivo. Theoretically, thymus explants are cut off free from blood stream. So if some developing or developed thymocytes had the inclination to migrate into the periphery, they would only be accumulated in the blood vessels within thymus explants. After 3-day's culture, under transmission electron microscope we observed the migrating thymocytes accumulated in the blood vessels of C57BL/6 mice thymus explants, and these thymocytes were occurring apoptosis at different stage. To our knowledge, this findings offers the first morphological evidence that thymocytes do not necessarily die inside the thymus in situ, and that having acquired the death signals thymocytes can migrate into the blood stream and die quickly outside the thymus. But this is not to say that we deny the intrathymic death hypothesis. On the contrary, we found the number of thymocytes occurring in situ apoptosis on the surfaces of stromal cells is far more than that of migrating into the blood vessels. So, our proposal is that there are two sites for thymocytes apoptosis, some die inside the thymus and the others die outside the thymus.  相似文献   

2.
本文采用的胸腺外植块培养法实验既能够模拟胸腺微环境中胸腺细胞的发育周期又能够切断血液流通,理论上造成一种胸腺封闭状态(产生的胸腺细胞不能迁出胸腺外,假如某些胸腺细胞有迁出倾向,它也只能堆积于胸腺血管内)。培养3天后,在透射电子显微镜下观察到胸腺外植块血管内存在有胸腺细胞,并且处于不同的凋亡时期。本文的实验结果,在形态学上首次为胸腺外死亡假说找到了直接证据,说明胸腺细胞不必一定在胸腺原位死亡,它也可以获得死亡信号之后进入血管,随血液循环至外用最终死亡。但是这决不是意味着否定胸腺内死亡假说,因为我们同时观察到在胸腺基质细胞表面原位凋亡的胸腺细胞数量远超过进入血管后凋亡的胸腺细胞(但是在基质细胞表面凋亡的胸腺细胞并没有被基质细胞有效吞噬),所以我们的观点是:胸腺细胞同时存在胸腺内死亡和胸腺外死亡两种方式,一部分胸腺细胞在胸腺原位死亡的,而另一部分胸腺细胞是迁出胸腺后死亡溶解的。  相似文献   

3.
Peptide specificity of thymic selection of CD4+CD25+ T cells.   总被引:21,自引:0,他引:21  
The CD4(+)CD25(+) regulatory T cells can be found in the thymus, but their need to undergo positive and negative selection has been questioned. Instead, it has been hypothesized that CD4(+)CD25(+) cells mature following TCR binding to MHC backbone, to low abundant MHC/peptide complexes, or to class II MHC loaded with peripheral autoantigens. In all these circumstances, processes that are distinct from positive and negative selection would govern the provenance of CD4(+)CD25(+) cells in the thymus. By comparing the development of CD4(+)CD25(-) and CD4(+)CD25(+) cells in mice expressing class II MHC molecules bound with one or many peptide(s), we show that the CD4(+)CD25(+) cells appear during natural selection of CD4(+) T cells. The proportion of CD4(+)CD25(+) cells in the population of CD4(+) thymocytes remains constant, and their total number reflects the complexity of selecting class II MHC/peptide complexes. Hence, thymic development of CD4(+)CD25(+) cells does not exclusively depend on the low-density, high-affinity MHC/peptide complexes or thymic presentation of peripheral self-Ags, but, rather, these cells are selected as a portion of the natural repertoire of CD4(+) T cells. Furthermore, while resistant to deletion mediated by endogenous superantigen(s), these cells were negatively selected on class II MHC/peptide complexes. We postulate that while the CD4(+)CD25(+) thymocytes are first detectable in the thymic medulla, their functional commitment occurs in the thymic cortex.  相似文献   

4.
Apoptosis is one of the key regulatory mechanisms in tissue modeling and development. In the thymus, 95-98% of all thymocytes die by apoptosis because they failed to express a TCR with an optimal affinity for the selecting intrathymic peptide-MHC complexes. We studied the possible role of two prominent nerve growth factor (NGF-TNF) family member systems, Fas ligand (FasL)-Fas receptor (FasR) and TNF-alpha-TNFR, in apoptosis of murine CD8+4+ double-positive (DP) thymocytes induced via TCR-CD3- and cAMP-mediated signaling. TCR-CD3epsilon-mediated apoptosis of DP thymocytes was found not to be dependent on either of the two systems. The FasL-FasR system was also found to be dispensable for the cAMP-mediated apoptosis. By contrast, cAMP agonists (dibutyryl-cAMP and forskolin) induced apoptosis via TNF-alpha, as evidenced by 1) the ability of anti-TNF-alpha mAbs to abrogate cAMP analogue-induced DP apoptosis in a dose-dependent manner; and 2) increased resistance of DP thymocytes from TNF-alpha-/- and TNFR I-/-II-/- animals to cAMP agonist-mediated apoptosis. cAMP agonists induced DP thymocyte death by a combination of two mechanisms: first, they induced selective up-regulation of TNF-alpha production, and, second, they sensitized DP thymocytes to TNF-alpha. The latter effect may be due to the down-regulation of TNFR-associated factor 2 protein. These results identify TNF-alpha as the critical mediator of cAMP-induced apoptosis in thymocytes and provide a molecular explanation for how the cAMP stimulators, including the sex steroids, may modulate T cell production output, as observed under physiological and pharmacological conditions.  相似文献   

5.
The nature of the signals that influence thymocyte selection and determine the fate of CD4(+)8(+) (double positive) thymocytes remains unclear. Cytokines produced locally in the thymus may modulate signals delivered by TCR-MHC/peptide interactions and thereby influence the fate of double-positive thymocytes. Because the IL-2/IL-2R signaling pathway has been implicated in thymocyte and peripheral T cell survival, we investigated the possibility that IL-2/IL-2R interactions contribute to the deletion of self-reactive, Ag-specific thymocytes. By using nontransgenic and transgenic IL-2-sufficient and -deficient animal model systems, we have shown that during TCR-mediated thymocyte apoptosis, IL-2 protein is expressed in situ in the thymus, and apoptotic thymocytes up-regulate expression of IL-2RS: IL-2R(+) double-positive and CD4 single-positive thymocytes undergoing activation-induced cell death bind and internalize IL-2. IL-2-deficient thymocytes are resistant to TCR/CD3-mediated apoptotic death, which is overcome by providing exogenous IL-2 to IL-2(-/-) mice. Furthermore, disruption or blockade of IL-2/IL-2R interactions in vivo during Ag-mediated selection rescues some MHC class II-restricted thymocytes from apoptosis. Collectively, these findings provide evidence for the direct involvement of the IL-2/IL-2R signaling pathway in the deletion of Ag-specific thymocyte populations and suggest that CD4 T cell hyperplasia and autoimmunity in IL-2(-/-) mice is a consequence of ineffective deletion of self-reactive T cells.  相似文献   

6.
Autoreactive thymocytes can be eliminated by clonal deletion during their development in the thymus. The precise developmental stage(s) at which clonal deletion occurs in a normal thymus has been difficult to assess, in large part because of the absence of a specific marker for TCR-mediated apoptosis. In this report, we reveal that Nur77 expression can be used as a specific marker of clonal deletion in an unmanipulated thymus and directly identify TCRintCD4+CD8+ and semimature CD4+CD8- thymocytes as the principal targets of deletion. These data indicate that clonal deletion normally occurs at a relatively late stage of development, as cells mature from CD4+CD8+ thymocytes to single-positive T cells.  相似文献   

7.
He XY  Li J  Qian XP  Fu WX  Li Y  Wu L  Chen WF 《Cell research》2004,14(2):125-133
Mouse thymic stromal cell line 4 (MTSC4) is one of the stromal cell lines established in our laboratory. While losing the characteristics of epithelial cells, they express some surface markers shared with thymic dendritic cells (TDCs). To further study the biological functions of these cells, we compared the capability of MTSC4 with TDCs in the induction of thymocyte apoptosis, using thymic reaggregation culture system. Apoptosis of thymocytes induced by MTSC4 and TDCs was measured by Annexin V and PI staining and analyzed by flow cytometry. We found that MTSC4 selectively augmented the apoptosis of CD4^ 8^ (DP) thymocytes. This effect was Fas/FasL independent and could not be blocked by antibodies to MHC class I and class II molecules. In addition, MTSC4 enhanced the apoptosis of DP thymocytes from different strains of mice, which implies that MTSC4-induced thymocyte apoptosis is not mediated by the TCR recognition of self peptide/MHC molecules. In contrast to MTSC4, thymocyte apoptosis induced by TDCs was MHC-restricted. Thus, MHC-independent fashion of stromal-DP thymocyte interaction may be one of the ways to induce thymocyte apoptosis in thymus. Our study has also shown that the interaction of MTSC4 stromal cells and thymocytes is required for the induction of thymocyte apoptosis.  相似文献   

8.
A 24-hour co-cultivation of thymocytes and epithelial cells taken from human thymus results in mutual activation of epitheliocytes and thymocytes, as well as in apoptosis of thymocytes. The apoptosis can also be induced by a cultural supernatant of the thymic-epithelial cells, its level being lower, however, than in the co-culture. Thymocyte death and elimination develop faster in a co-culture with allogeneic thymic epithelial cells.  相似文献   

9.
Nedjic J  Aichinger M  Klein L 《Autophagy》2008,4(8):1090-1092
During T cell development in the thymus, scanning of peptide/major histocompatibility (MHC) molecule complexes on the surface of thymic epithelial cells ensures that only useful (self-MHC restricted) and harmless (self-tolerant) thymocytes survive. In recent years, a number of distinct cell-biological features of thymic epithelial cells have been unraveled that may have evolved to render these cells particularly suited for T cell selection, e.g., cortical epithelial cells use unique proteolytic enzymes for the generation of MHC/peptide complexes, whereas medullary epithelial cells "promiscuously" express otherwise tissue-restricted self-antigens. We recently showed that macroautophagy in thymic epithelial cells contributes to CD4 T cell selection and is essential for the generation of a self-tolerant T cell repertoire. We propose that the unusually high constitutive levels of autophagy in thymic epithelial cells deliver endogenous proteins to MHC class II molecules for both positive and negative selection of developing thymocytes.  相似文献   

10.
bcl-x, a homologous gene of bcl-2, has an anti-apoptotic function and appears to play a critical role in the development of lymphoid systems. To investigate the effect of overexpressed Bcl-x(L) on the development of T lymphocytes, we established two lines of transgenic mice by using Emu-chicken bcl-x(L) (cbcl-x(L)) transgene, where the cBcl-x(L) protein was expressed mainly in lymphoid cells. Although thymocytes and splenocytes from cbcl-x(L) transgenic mice are resistant to apoptosis in vitro, clonal deletion of thymocytes, recognizing endogenous self-superantigens in the thymus, still normally proceeded and no self-reactive T cells were found in the spleen of the transgenic mice. To dissect clonal deletion, we utilized two in vitro models, thymocytes/antigen presenting cells co-culture system and fetal thymus organ culture system. In both, bacterial superantigen staphylococcus aureus enterotoxin B (SEB) induces apoptosis of T cells with Vbeta8+ T cell receptor (TCR) reacting to SEB, which mimics clonal deletion of self-reactive thymocytes in vivo. SEB-induced depletion of Vbeta8+ T cells from thymocytes when taken from the transgenic mice was effectively inhibited. The data might raise the possibility that cell death process involved in clonal deletion in the thymus is a form of apoptosis inhibited by Bcl-x(L).  相似文献   

11.
12.
13.
14.
松果体及其褪黑素对大鼠胸腺细胞凋亡的影响   总被引:1,自引:0,他引:1  
目的探讨松果体及其褪黑素对胸腺细胞凋亡的影响以及Caspase-3的表达。方法选用清洁级SD大鼠,分为正常对照组、假手术对照组、松果体摘除组、松果体摘除 褪黑素腹腔注射7.5mg/kg/d组和松果体摘除 褪黑素腹腔注射15mg/kg/d组。术后4、8周取材。运用TUNEL法检测胸腺细胞的凋亡程度,用ABC法染胸腺Caspase-3阳性细胞,计算机图像分析仪测量阳性细胞面积及其染色强度。以RT-PCR法检测褪黑素干预原代培养胸腺细胞Caspase-3的表达。结果松果体摘除后8周时胸腺细胞凋亡显著增加,补充褪黑素则能明显减少胸腺细胞的凋亡。Caspase-3阳性细胞主要见于胸腺皮质,松果体摘除后胸腺皮质Caspase-3阳性细胞面积增加明显,补充褪黑素则使其下降。褪黑素能上调培养胸腺细胞Caspase-3的表达水平。结论松果体能调控大鼠胸腺细胞的凋亡,松果体摘除促进胸腺细胞的凋亡,补充褪黑素能缓解相关影响。  相似文献   

15.
Summary In situ pre-existing complexes of epithelial cells and thymocytes having thymic nurse cell characteristics were visualized in the murine thymus cortex using dexamethasone as a potent killer of cortisone-sensitive thymocytes. The degradation and subsequent depletion of cortisone-sensitive thymocytes enclosed within cortical epithelial cells appeared to be paralleled by thymocyte degradation and depletion in thymic nurse cells isolated from thymic tissue fragments from dexamethasone-treated animals. This suggests that thymic nurse cells are derived from pre-existing sealed complexes of cortical epithelial cells and thymocytes. Not all thymocytes situated within in situ epithelial or thymic nurse cells complexes appear to be cortisone-sensitive: a minority of 1–2 thymocytes per complex survives the dexamethasone-treatment, thus constituting a minor subset of cortical cortisone-resistant thymocytes predominantly localized within cortical epithelial cells in situ and within thymic nurse cells derived from such structures. Cortisone resistance in thymocytes thus seems to be acquired within the cortical epithelial cell microenvironment. Cortisone-resistant thymocytes in thymic nurse cells express the phenotype of mature precursors of the T helper lineage, indicating that the in situ correlates of thymic nurse cells may play an important role in T cell maturation and selection.  相似文献   

16.
17.
To examine the binding specificity of steroid hormone-cytoplasmic receptor complexes to nuclei, binding of 3H-dexamethasone (Dex)-liver, 3H-Dex-thymus and 3H-dihydrotestosterone (DHT)-prostate receptor complexes to nuclei from liver, prostate, thymus, spleen and kidney was studied. It was observed that a significant amount of steroid-receptor complexes was bound to any nuclei used in the present study and the extent of the binding of receptor complexes to nuclei from homologous tissues was not always greater than that to nuclei from heterogenous tissues. However, a significant portion of the 3H-Dex-liver and 3H-DHT-prostate receptor complexes was not absorbed by nuclei from kidney, spleem, and thymus, and the unabsorbed complexes were efficiently bound to liver and prostate nuclei. The results obtained indicate that two types of receptor complex with regard to nuclear binding were present in cytosols of liver and prostate; one binds to nuclei from kidney, spleen, thymus, liver and prostate and the other does not bind to nuclei from kidney, spleen and thymus but does bind to nuclei of liver and prostate. The latter type of receptor complex was not observed in the cytosol from the thymus.  相似文献   

18.
Cellular complexes, analogous by virtue of their external appearance, size, and number of seemingly internalized thymocytes to thymic nurse cells (TNCs) of endothermic vertebrates, were seen in short-term cultures (6-8 days) of mechanically and enzymatically dissociated thymuses of leopard frog tadpoles. Most TNC-like complexes from mechanically disrupted thymuses were covered with many thymocytes that morphologically resembled the "internalized" thymocytes. With time in culture, most complexes remained spherical and lost their externally adherent and "internalized" thymocytes. Some complexes, however, adhered to the glass substratum by means of macrophage-like cells. After one typically appearing TNC from a mechanically dissociated thymus had released its "internalized" thymocytes and spread completely over the glass substratum, it could be seen to consist actually of 9-10 stromal cells with the appearance of epithelial cells, macrophages, and dendritic cells. TNC-like structures from enzymatically dissociated thymuses had few, if any, attached thymocytes. Although these structures closely resembled murine TNCs initially, they displayed abnormal transformations within a few days of culture. Our observations led us to question the assumption that all TNCs from mechanically as well as enzymatically isolated TNCs from vertebrate thymuses are single cells. Rather, some if not all of the so-called TNC may actually be entities composed of several stromal cell types that enclose thymocytes. We suggest that this configuration seen in vitro may reflect the architecture of the compartmentalized reticular stromal cell meshwork that characterizes the intact thymus.  相似文献   

19.
In this work the antibodies were obtained against chromatin isolated from thymocytes of intact and irradiated rats (2 h after exposing to 10 Gy) and against polydeoxyribonucleotides (PDN) extracted from thymus nuclei 6 h following irradiation. All the antibodies under study reacted more readily with the chromatin obtained from the thymus of exposed rats than with the control chromatin. The complexes of DNA with the most firmly bound non-histone proteins, obtained from the three objects under study, reacted with the antibodies with equal efficiency. Thus, a higher reactivity of PDN and chromatin from thymocytes of exposed rats was associated with the decondensation of the latter leading to an increase in availability of a part of antigenic determinants. Using the immunoblotting method we failed to discover any qualitative differences in the protein composition of the chromatin from control and exposed rats.  相似文献   

20.
Although fetal thymus organ culture (FTOC) has become widely used to investigate T-cell development, the differences between thymocyte development in vivo and in vitro (in FTOC) remain largely unknown. In this study, the viability and numbers of thymocytes recovered from embryonic thymus lobes in different gestation days (gd) mice or from 15 day embryonic thymus lobes cultured for different days in FTOC system were evaluated. The expression of CD3, CD4, CD8, CD95 ligand (CD95L), and CD69 on thymocytes were analyzed by FACS. The results showed that thymocytes, either in vivo or in vitro, could differentiate from double negative (DN) cells to double positive (DP) cells and to single positive (SP) cells. But the number of total thymocytes and the percentage of DP cells in vitro were less than that in vivo, and the expression of CD95L and CD69 on thymocytes in vitro was higher than that in vivo. Our results suggested that although thymocyte development in vitro could recapitulate thymic development in vivo, the proliferation of thymocytes in vitro was less intensive than that in vivo; the differentiation of thymocytes in vitro was delayed compared with that in vivo; and the apoptosis and activation of thymocytes in vitro were higher than that in vivo. In conclusion, FTOC is a useful system for the study of T cell differentiation, but it is necessary to interpret the results from in vitro studies carefully since the thymocyte development in vitro is asynchronous from that in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号