首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
100 mg of taurine per kg body weight had been administered intraperitoneally and 30 min after the administration the animals were sacrificed. Glutamate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, glutaminase, glutamine synthetase, glutamate decarboxylase and GABA aminotransferase along with the content of glutamate and GABA in cerebral cortex, cerebellum and brain stem were studied and compared with the same obtained in the rats treated with normal saline in place of taurine. The results indicated a significant decrease in the activity of glutamate dehydrogenase in cerebral cortex and cerebellum and a significant increase in brain stem. Glutaminase and glutamine synthetase were found to increase significantly both in cerebral cortex and cerebellum. The activities of glutamate decarboxylase was found to increase in all the three regions along with a significant decrease in GABA aminotransferase while the content of glutamate showed a decrease in all the three brain regions, the content of GABA was observed to increase significantly. The above effects of taurine on the metabolism of glutamate and GABA are discussed in relation to the functional role of GABA and glutamate. The results indicate that taurine administration would result in a state of inhibition in brain.  相似文献   

2.
The effects of aminooxyacetic acid (AOAA), a transaminase inhibitor, and 2-oxoglutarate, a precursor to glutamate by the activity of aspartate aminotransferase (AAT), on slices of rat medulla oblongata, cerebellum, cerebral cortex, and hippocampus were studied. The slices were superfused and electrically stimulated. There was a Ca2+-dependent stimulus-evoked release of endogenous glutamate, gamma-aminobutyric acid (GABA), and beta-alanine in all regions examined. AOAA (10(-4) and 10(-3) M) decreased the release of glutamate in the medulla oblongata and cerebellum but not in the hippocampus. L-Canaline, a specific inhibitor of ornithine aminotransferase, did not affect the glutamate release in the medulla. 2-Oxoglutarate (10(-3) M) increased the release of glutamate in the medulla oblongata and cerebellum but not in the cerebral cortex and hippocampus. Treatment with AOAA (10(-4) M) almost abolished the activities of AAT in all regions studied. AOAA (10(-4) and 10(-3) M) increased the stimulus-evoked release of GABA in the cerebellum, cerebral cortex, and hippocampus, whereas the stimulus-evoked release of beta-alanine was decreased by this agent in all regions studied. These results suggest the participation of AAT in the synthesis of the transmitter glutamate in the medulla oblongata and cerebellum of the rat.  相似文献   

3.
The changes in both the levels of some free amino acids and their metabolism in the rat brain during the first 24 hr of postnatal life were studied. The content of glutamic acid decreased for the first 2 hr; it remained at the lowest level for the next 4 hr, when it began to increase. The content of alanine decreased for the first 6 hr and approached the adult level. Oxygen consumption, glucose oxidation, and pyruvate formation in the cerebral slices of the 24-hr-old rats were as much as 150% of that of the 19-day-old fetus. The distribution profile of radioactivity incorporated into the cerebral amino acids from the subarachnoid-injected [U14C]glucose was also changed. In the 2- and 6-hr-old rats, 50% of the total radio-activity recovered in the free amino acids was in alanine. Its rate decreased to 30% in the 24-hr-old and was 2% in the adult, while the radioactivity incorporated into glutamic acid increased. Alanine aminotransferase activity started to increase at birth and had the highest level at 24 hr after birth. It then decreased and finally reached the same level as shown at birth. However, aspartate aminotransferase increased during the first 6 hr after birth and did not change until the end of the first day of life.  相似文献   

4.
Chronic ammonia toxicity in experimental mice was induced by exposing them for 2 and 5 days to 5 % (v/v) ammonia solution. The enzymes concerned with glutamate metabolism (aspartate-, alanine- and tyrosine aminotransferases, glutamate dehydrogenase and glutamine synthetase) and (Na+ + K+)-ATPase were estimated in the three regions of brain (cerebellum, cerebral cortex and brain stem) and in liver. Glutamate, aspartate, alanine, glutamine and GABA, RNA and protein were also estimated in the three regions of brain and liver. A significant rise in the activity of (Na+ + K+)-ATPase in all the three regions of brain along with a fall in the activity of alanine aminotransferase was noticed. Changes in the activities of other enzymes were also observed. A significant increase in alanine and a decrease in glutamic acid was observed while no change was observed in the content of other amino acids belonging to the glutamate family. As a result of this, changes in the ratios of glutamate/glutamine and glutamate + aspartate/GABA was observed. The results indicated that the brain was in a state of more depression and less of excitation. Under these conditions the liver tissue was showing a profound rise in the activity of the enzymes of glutamate metabolism. The results are further discussed.  相似文献   

5.
The aim of this study was to compare the changes in amino acids (alanine, aspartate, GABA, glutamate, glutamine, glycine, serine taurine) that are produced in different regions of the neonate brain (telencephalon, diencephalon cerebellum, brain stem) following a survivable period of anoxia and after the re-establishment of air respiration. Anoxia provoked different responses in the different regions. The changes during the anoxic period were as follows. In the brain stem there was a decrease in aspartate, in the telencephalon there was a significant increase in GABA and alanine and a decrease in aspartate, in the diencephalon, glutamate and GABA increased, and in the cerebellum, glycine and alanine levels were enhanced. The changes during recovery were even more dissimilar. Here the greatest shifts were seen in the brain stem with increases in glutamine, GABA, aspartate, glycine, serine, alanine, and taurine. In the telencephalon glutamate fell and alanine increased, in the diencephalon GABA increased, and in the cerebellum, glutamate fell while glycine and alanine increased. In none of the major brain regions did the pattern of changes in neurotransmitters correspond to that seen in anoxic tolerant species.  相似文献   

6.
A study was made of the effect of X-rays (4,5 Gy) and pyridoxal phosphate (3 mg/kg, v/v) on the activity of pyridoxal enzymes of GABA metabolism (e.g. glutamate decarboxylase, E.C. 4.1.1.15) and aminobutyrate aminotransferase (GABA-T, E.C. 2.6.1.19), as well as on GABA and glutamate content of the hemisphere cortex, brain stem and cerebellum of rabbits 6 and 10 days following irradiation and injection of a coenzyme. The height of the radiation sickness in rabbits was characterized by the manifest changes in glutamate decarboxylase and GABA-T activity, as well as in GABA and glutamate content of various brain parts differing in the structural and functional functions. The administration of pyridoxal phosphate produced pronounced activation of glutamate decarboxylase, particularly 6 days after irradiation and administration of the co-enzyme, and, to a lesser extent, influenced GABA-T function. Pyridoxal phosphate favored maintaining the GABA level above the control level in the hemisphere cortex and brain stem 6 and 10 days after exposure. The injection of pyridoxal phosphate did not normalize the glutamate content of the brain parts 6 days after exposure, but favored the normalization of GABA-T activity on day 10.  相似文献   

7.
The comparison has been made for the following items: intensity of pyruvate alpha-ketoglutarate, succinate oxidation, the gamma-aminobutyric acid (GABA) formation rate, utilization, total content of GABA, glutamate and alanine, the bound/free form ratio of GABA and glutamate, intensity of binding and desorption of exogenic [I-14C]GABA in homogenates of the cortex, cerebellum and brainstem of the Wistar rats. It is revealed that the intensity of ketoacids oxidation is significantly lower in the cerebellum than in the cortex, but the maximal activity of the enzymes of GABA formation and utilization is higher, due to which considerable oxidation of alpha-ketoglutarate transforming into succinate is possible proceeding the GABA shunt pathway. The cortex homogenates contrary to the cerebellum ones are characterized by the reliably higher intensity of ketoacid oxidation and by insignificant contribution of the GABA-shunt to the succinate production. These differences are in line with the reliably higher content of endogenic bound GABA in the cortex as compared to the cerebellum, with a higher level of binding of exogenic labelled GABA and with less pronounced desorption of the label from neurostructures. An assumption is advanced that the observed differences are related to the known high sensitivity of the cortex and to relative resistance of cerebellum to hypoxia and hypoglycemia.  相似文献   

8.
The developmental change of endogenous glutamate, as correlated to that of gamma-glutamyl transferase and other glutamate metabolizing enzymes such as phosphate activated glutaminase, glutamate dehydrogenase and aspartate, GABA and ornithine aminotransferases, has been investigated in cultured cerebral cortex interneurons and cerebellar granule cells. These cells are considered to be GABAergic and glutamatergic, respectively. Similar studies have also been performed in cerebral cortex and cerebellum in vivo. The developmental profiles of endogenous glutamate in cultured cerebral cortex interneurons and cerebellar granule cells corresponded rather closely with that of gamma-glutamyl transferase and not with other glutamate metabolizing enzymes. In cerebral cortex and cerebellum in vivo the developmental profiles of endogenous glutamate, gamma-glutamyl transferase and phosphate activated glutaminase corresponded with each other during the first 14 days in cerebellum, but this correspondence was less good in cerebral cortex. During the time period from 14 to 28 days post partum the endogenous glutamate concentration showed no close correspondence with any particular enzyme. It is suggested that gamma-glutamyltransferase regulates the endogenous glutamate concentration in culture neurons. The enzyme may also be important for regulation of endogenous glutamate in brain in vivo and particularly in cerebellum during the first 14 days post partum. Gamma-glutamyl transferase in cultured neurons and brain tissue in vivo appears to be devoid of maleate activated glutaminase.Abbreviations used Asp-T aspartate aminotransferase (EC 2.6.1.1) - GABA-T GABA aminotransferase (EC 2.6.1.19) - GAD glutamate decarboxylase (EC 4.1.1.15) - gamma-GT gamma-glutamyl transferase (gamma-glutamyl transpeptidase) (EC. 2.3.2.2) - Glu glutamate - GDH glutamate dehydrogenase (EC 1.4.1.3) - GS glutamine synthetase (EC 6.3.1.2) - MAG maleate activated glutaminase - Orn-T ornithine aminotransferase (EC 2.6.1.13) - PAG phosphate activated glutaminase (EC 3.5.1.1)  相似文献   

9.
Abstract: Injection Of nanomole quantities Of kainic acid into The Rat cerebellum resulted in a rapid and selective destruction Of neurons. At all times Studied, the purkinje cells were depleted following injection, and this loss was paralleled by a decrease in GABA levels, high-affinity neuronal GABA uptake, and in glutamate decarboxylase activity. For the first 3 days following injection The granule cells were not reduced in numbers and the high-affinity uptake of glutamate was similarly not decreased. After 4-6 days, however, the granule cells were substantially depleted, although No clear changes in glutamate up-take were observed. The normal laminar structure of the cerebellum was extensively disrupted and glial proliferation was evident. Measurement of endogenous amino acid levels showed a decrease in glutamate and aspartate levels after kainic acid injection. glycine levels were consistently increased while glutamine and alanine were unchanged. GABA receptor binding was decreased after injection, but glutamate binding was enhanced.  相似文献   

10.
The effects of taurine supplementation on GABA-related amino acid homeostasis in developing nervous tissues of suckling rats were studied. In the first two weeks of postnatal growth, cerebral cortex and cerebellum appear more accessible to taurine supplementation in comparison to retina; in addition, different changes in excitatory/inhibitory amino acids were observed. After the 5th day of life, in the retina and cerebellum of taurine-supplemented pups a decrease in GABA levels was found; in contrast, in cerebral cortex GABA content significantly increased throughout 20 days of postnatal growth. In all nervous tissues studied (except for cerebellum) glutamine concentration increased at the 5th day; then in cerebellum and in retina, but not in cerebral cortex, a significant decrease until the 20th day occurred. Furthermore, in cerebellum and retina taurine supplementation decreased glutamate levels, in comparison to controls, at the 10th and until the 20th day of postnatal life, respectively, whereas in cerebral cortex an increase in glutamate level was observed only at the 5th day. In conclusion, taurine supplementation, in excess to the usual amount from the mother's milk, affected the glutamate compartments in various cell types. The changes in GABA-related amino acid concentrations in cerebral cortex, cerebellum, and retina may depend on the different pattern of the metabolic processes at different maturative stages.  相似文献   

11.
Although alcoholic intoxication is attributed to its pharmacological effects on the cell membranes in brain, the rapid metabolic utilisation of the same alters the metabolism of brain affecting the metabolism of glutamate and GABA which have varied metabolic roles besides serving a major proportion of synaptic activity. A study on the effects of ethanol, both acute and short-term, on glutamate (glu) and GABA metabolism in various regions of rat brain was carried out. Increased activities of glutamic acid decarboxylase (GAD) and aspartic acid aminotransferase (AST) in all brain regions, but decreased activity of glutamic acid dehydrogenase (GDH) in cerebral cortex (CC) and cerebellum (CB) following ethanol administration in brain was observed. Differential effects of ethanol were also obtained on the contents of glu and aspartate (asp), which were increased in CC, CB, and brain stem (BS) regions, as opposed to GABA content, which, although found to increase in acute toxicity, showed a decrease in all of the above brain regions in short-term toxicity. It is concluded that the above changes in glu, asp and GABA represent the consequences of metabolic utilization of alcohol in the brain, probably more a state of cerebral excitation than depression, and the changes may be a compensatory phenomenon.  相似文献   

12.
The activity of glutamate decarboxylase (L-glutamate carboxy-1-lyase; EC 4.1.1.15), GABA-transaminase (GABA-alpha-ketoglutarate aminotransferase, EC 2.6.1.19), content of gamma-aminobutyric, glutamic and aspartic acids were studied in different parts and subcellular particles of the cat and rat brain. It is shown that regional and subcellular distribution of the GABA metabolic components in the cat and rat brain are mainly similar, but quantitative indices are different.  相似文献   

13.
Dynamics of gamma-aminobutyric acid (GABA) content, the level of glutamate and total content of dicarboxylic amino acids and their amides as well as glutamate decarboxylase and GABA-alpha-ketoglutarate aminotransferase activities in the brain of F1CBAXC57BL/6 hybrid mice were determined during a year. The content of GABA and adicarboxylic acids in the brain in autumn-winter is higher than in summer. An analogous regularity is observed in the activity of basic enzymes of the GABA metabolism. Against a background of the common regularity (higher values of these indices in winter and autumn and comparatively low in summer) a particularly pronounced significant increase (as compared with the minimum level) is found in March for the activity of GABA-shunt enzymes, the content of GABA and dicarboxylic amino acids. The data obtained testify to the fact that in autumn-winter the brain tissue is characterized by a comparatively high content of dicarboxylic amino acids, their amides and GABA as well as by a more intensive functioning of the GABA-shunt, which is confirmed by the activation of the enzymes of GABA production and utilization in the corresponding seasons.  相似文献   

14.
The effects of one intraperitoneal injection of 60–65 mg/kg of 3-acetylpyridine (3-AP) on the levels of aspartate, glutamate, GABA, taurine, glycine, and alanine in the cerebellum, medulla, telencephalon, and diencephalon-mesencephalon of the rat were studied at various times (4–28 days) after injection. In the first 4–7 days, the levels of glutamate, GABA, glycine, and alanine in the cerebellum were 10–30% higher in the 3-AP-treated rats than in the control animals. By day 14, the levels of these four amino acids were normal (in the case of glutamate and glycine) or below normal (for GABA and alanine). By day 21, the values for GABA and alanine returned to normal. In the first 7 days, the level of aspartate in the cerebellum was the same in both the 3-AP- and saline-injected groups. From days 14 to 28, the level of aspartate in the cerebellum was 10–20% lower in the 3-AP-injected group than in the saline-treated animals. The level of taurine in the cerebellum was 15–30% lower in the 3-AP group than in the control group from days 7 to 28. The pattern of changes observed in the medulla in the first 7 days was similar to that found in the cerebellum for this period. However, unlike the data for the cerebellum, the level of aspartate in the medulla was unchanged by the 3-AP injection from day 14 to day 28, and the level of glutamate in the medulla remained higher (10–15%) from days 14 to 28 in the 3-AP-injected animals with respect to control values. The levels of taurine in the medulla were lower (10–15%) from day 7 to day 28 in the 3-AP injected group with respect to control values. The injection of 3-AP did not alter the levels of aspartate, glutamate, GABA, taurine, glycine, or alanine in the telencephalon on days 7, 14, 21, or 28 and in the diencephalon-mesencephalon on day 21 with respect to control levels.  相似文献   

15.
Acute effects of intraperitoneal administration of ammonium chloride (200 mg/kg) on Na+,K+-ATPase and amino acid content of the glutamate family (glutamate, aspartate, alanine, glutamine, and GABA), as well as the enzymes involved in the metabolism of these amino acids, have been studied in the different regions of brain and liver in mice. A significant increase in the activity of Na+,K+-ATPase was observed in the cerebellum, cerebral cortex, and brain stem. A similar increase in the activity of glutamate dehydrogenase was observed in the brain stem, while a moderate increase in the activity of this enzyme was observed in the cerebral cortex and liver in the mice treated with ammonium chloride. In all three regions of brain, a 50% decrease was observed in the activity of alanine aminotransferase, while the activity of aspartate aminotransferase significantly rose in the brain stem. The activity of glutamine synthetase did not change much in the three regions of brain, and a significant fall was registered in the liver. The activity of tyrosine aminotransferase showed a rise in the cerebellum, brain stem, and in liver. Not much change was observed in the protein content in either brain or liver, whereas there was a 1.5-fold increase in the total RNA content in the liver of the animals treated with ammonium chloride. Under the experimental conditions, there was an increase only in the content of glutamine, of all the amino acids tested, in the cerebral cortex and liver. Similar results were obtained with homogenates of tissues enriched with ammonium chloride (in vitro) for the enzyme systems studied. These results are discussed, and the probable metabolic and functional significance of ammonia in brain is indicated.  相似文献   

16.
Acute and chronic ammonia toxicity was produced in the mice by intraperitoneal injection of ammonium chloride (200 mg/kg) and by exposure of mice to ammonia vapours (5% v/v) continuously for 2 days and 5 days respectively. The ammonia content was elevated in the cerebellum, cerebral cortex and brain stem and in liver. In acute ammonia intoxication there was a decrease in the monoamine oxidase (MAO) activity in all the three regions of brain. In chronic ammonia toxicity (2 days of exposure) a significant increase in the activity of MAO was observed in the cerebral cortex while in cerebellum and brain stem there was a significant decrease. In cerebral cortex and cerebellum there was a rise in the activity of MAO as a result of exposure to ammonia vapours for 5 days. A significant decrease was observed in the activity of glutamate decarboxylase (GAD) in all the three regions of the brain both in acute and chronic ammonia toxicity (2 days). There was a decrease in the activity of this enzyme only in the cerebral cortex in the animals exposed to ammonia for 5 days. The activity of GABA-aminotransferase (GABA-T) showed a significant rise in cerebellum and a fall in the brain stem in acute ammonia toxicity. In chronic ammonia toxicity GABA-T showed a rise in all the three regions of brain. Chronic ammonia toxicity produced a significant decrease in the content of glutamate in all the three regions without a significant change in the content of aspartate. GABA and glutamine. The content of alanine increased in all the three regions of brain under these experimental conditions. The ratio of glutamate + aspartate/GABA and glutamate/glutamine showed a decrease in all the three regions as a result of ammonia toxicity.  相似文献   

17.
Abstract— The action of hydrazinopropionic acid in vivo on the metabolism of amino acids in the CNS of mice was studied over a period of 24 hr. At 82 μmoles/kg, a transient fourfold rise in the levels of tyrosine occurred followed by a more moderate and prolonged increase in the levels of GABA. When the dose of hydrazinopropionate was raised to 123 μmoles/kg, the changes in the levels of tyrosine were identical with those at the lower dose, while levels of GABA rose further before reaching a steady state. Levels of glutamate decreased concomitantly. In addition, the concentrations of alanine, β-aminoisobutyric acid and an unknown compound tended to rise. A doubling of the dose to 246 μmoles/kg enhanced the effects obtained with the lower doses but did not produce any new changes in the patterns of amino acids of the CNS. The elevation in the concentrations of alanine paralleled changes in the levels of tyrosine. The changes in the concentrations of the unknown compound, tentatively identified as α-aminoadipate, and of β-aminoisobutyric acid resembled those of GABA. The results are interpreted to indicate an inhibition by hydrazinopropionic acid of tyrosine aminotransferase and aminobutyrate aminotransferase.  相似文献   

18.
M.A. Rea  W.J. McBride 《Life sciences》1978,23(24):2355-2359
The effect of the x-irradiation-induced loss of cerebellar granule and stellate cells on the levels of glutamate, aspartate and GABA in regions of the rat cerebellum was determined. The level of glutamate was significantly lower in the neuron-depleted cerebellar cortex while GABA levels were higher than control values in the cerebellar cortex and white matter of the x-irradiated rats. Aspartate levels were not changed by x-irradiation in any cerebellar region. The data is discussed in terms of the proposed role of glutamate as the excitatory neurotransmitter released from granule cells.  相似文献   

19.
The content of glutamate, GABA, aspartate, glycine and alanine was determined in the cerebellum, brain stem and cerebrum of three different mutant mice which have been named ‘staggerer’, ‘weaver’ and ‘nervous’ on the basis of neurological symptoms. In the ‘staggerer’ and ‘weaver’ mutants there is an almost complete absence of granule cells in the cerebellar cortex while in the ‘nervous’ mutant there is a loss of Purkinje cells (and to a lesser extent a loss of granule cells) in the cerebellar cortex. In the cerebellum of the ‘weaver’ mutant, the content of glutamate was signficantly lower (P < 0.025) than control values (8.77 ± 0.76 vs 12.0 ± 1.3 μmol/g tissue wet wt) and the contents of GABA and glycine were significantly greater than normal levels. In the cerebellum of the ‘staggerer’ mutant, the content of glutamate was significantly lower (6.62 ± 0.70 μmol/g) and the contents of glycine and alanine significantly higher than control values. In the cerebrum and brain stem regions of the staggerer mutant, weaver mutant and the normals the contents of the five amino acids were the same. The contents of glycine and alanine in the cerebellum, GARA and glycine in the brain stem and GABA and alanine in the cerebrum of the nervous mutants were higher than control values. The data are discussed in terms of a possible role for glutamate functioning as an excitatory transmitter when released from the cerebellar granule cells.  相似文献   

20.
It has been established that hydrocortisone administration increased the amount of total, free, bound and synaptosomal GABA in the hypothalamus, glutamate decarboxylase activity in the homogenate and synaptosomes and time of the mediator turnover. ACTH administration increased the GABA content and glutamate decarboxylase activity in synaptosomes. The total amino acid content and time of its turnover got higher only with single hormone administration. In the hippocamp hydrocortisone administration increased the total and free GABA contents, its turnover time, glutamate decarboxylase activity in the homogenate and decreased GABA-aminotransferase activity in the homogenate and synaptosomes. The GABA level in synaptosomes grew only with multiple hormone administration. Single administration of ACTH decreased the total GABA content, glutamate decarboxylase activity in the homogenate, while its multiple administration increased the GABA level in synaptosomes followed by a decrease of GABA-aminotransferase activity in the homogenate and synaptosomes. The GABA turnover time fell with single hormone administration and grew with the multiple one. Adrenalectomy induced no changes in the GABA content and activity of its metabolism enzymes in the hypothalamus, however the bound GABA level decreased, while the turnover time increased. In the hippocamp adrenalectomy decreased total, free and synaptosomal GABA contents, glutamate decarboxylase activity in a homogenate and turnover time. Subsequent hydrocortisone administration only partly normalized the revealed changes of the GABA metabolism in the brain structures under adrenalectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号