首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The globin derived from the monomer Component IV hemoglobin of the marine annelid,Glycera dibranchiata, has been completely sequenced, and the resulting information has been used to create a structural model of the protein. The most important result is that the consensus sequence of Component IV differs by 3 amino acids from a cDNA-predicted amino acid sequence thought earlier to encode the Component IV hemoglobin. This work reveals that the histidine (E7), typical of most heme-containing globins, is replaced by leucine in Component IV. Also significant is that this sequence is not identical to any of the previously reportedGlycera dibranchiata monomer hemoglobin sequences, including the sequence from a previously reported crystal structure, but has high identity to all. A three-dimensional structual model for monomer Component IV hemoglobin was constructed using the published 1.5 å crystal structure of a monomer hemoglobin fromGlycera dibranchiata as a template. The model shows several interesting features: (1) a Phe31 (B10) that is positioned in the active site; (2) a His39 occurs in an interhelical region occupied by Pro in 98.2% of reported globin sequences; and (3) a Met41 is found at a position that emerges from this work as a previously unrecognized heme contact.  相似文献   

2.
Primary sequences for the remaining two members (GMH2, GMH3) of the group of three major monomeric hemoglobins from the marine annelid Glycera dibranchiata have been obtained. Full sequences of each 147-amino acid globin were achieved with a high degree of confidence using standard Edman technology in combination with molecular mass determinations of the intact globins and of the cyanogen bromide cleavage fragments using electrospray ionization mass spectrometry. When minor assumptions concerning Q/E identities are made these new results indicate the likely correspondence of GMG2 with the protein represented by the first Glycera dibranchiata monomer hemoglobin complete sequence [Imamura et al., (1972), J. Biol. Chem. 247, 2785–2797]. When these new sequences are combined with the previously determined primary sequence for the third major monomer hemoglobin, GMH4 [Alam et al., J. Protein Chem. (1994), 13, 151–164], it becomes clear that these three (GMG2–4) are truly distinct proteins, contrary to previous suggestions. Surprisingly, our results show that none of these three primary sequences is identical to the published sequence of the refined monomer hemoglobin crystal structure protein; however, there is a strong correspondence to the GMG2 sequence. The present sequencing results, in combination with the published GMH4 sequence, confirm the presence of a distal Leu in place of the more commonly encountered distal His in all three of the major monomer hemoglobins isolated in this laboratory and indicate that the unusual B10 Phe occurs only in GMH4. Analysis of the sequences presented here, along with comparison of amino acid content for Glycera dibranchiata monomer hemoglobins isolated from three different laboratories, and comparison of NMR results from two laboratories suggest further correspondences which unify disparate published isolations.  相似文献   

3.
Primary sequences for the remaining two members (GMH2, GMH3) of the group of three major monomeric hemoglobins from the marine annelid Glycera dibranchiata have been obtained. Full sequences of each 147-amino acid globin were achieved with a high degree of confidence using standard Edman technology in combination with molecular mass determinations of the intact globins and of the cyanogen bromide cleavage fragments using electrospray ionization mass spectrometry. When minor assumptions concerning Q/E identities are made these new results indicate the likely correspondence of GMG2 with the protein represented by the first Glycera dibranchiata monomer hemoglobin complete sequence [Imamura et al., (1972), J. Biol. Chem. 247, 2785–2797]. When these new sequences are combined with the previously determined primary sequence for the third major monomer hemoglobin, GMH4 [Alam et al., J. Protein Chem. (1994), 13, 151–164], it becomes clear that these three (GMG2–4) are truly distinct proteins, contrary to previous suggestions. Surprisingly, our results show that none of these three primary sequences is identical to the published sequence of the refined monomer hemoglobin crystal structure protein; however, there is a strong correspondence to the GMG2 sequence. The present sequencing results, in combination with the published GMH4 sequence, confirm the presence of a distal Leu in place of the more commonly encountered distal His in all three of the major monomer hemoglobins isolated in this laboratory and indicate that the unusual B10 Phe occurs only in GMH4. Analysis of the sequences presented here, along with comparison of amino acid content for Glycera dibranchiata monomer hemoglobins isolated from three different laboratories, and comparison of NMR results from two laboratories suggest further correspondences which unify disparate published isolations.  相似文献   

4.
The pH dependence of infrared and NMR spectroscopic parameters for carbon monoxide bound to human, equine, rabbit and Glycera dibranchiata monomer fraction hemoglobins has been examined. In all cases, the vertebrate hemoglobins exhibit CO vibrations and 13CO chemical shifts which are pH dependent, whereas the invertebrate hemoglobin does not. The Glycera dibranchiata monomer fraction exhibits the highest wavenumber CO vibration (1970 cm-1) and the most shielded chemical shift (206.2 ppm). The pH behavior of the vertebrate CO-hemoglobins is that the heme-coordinated carbon monoxide chemical shifts and principal infrared vibrations tend toward the values observed for the G. dibranchiata CO-hemoglobin fraction. These results are interpreted as originating in protonation of the distal histidine (E-7) in the vertebrate hemoglobins. The anomalous values for Glycera dibranchiata are concluded to be due to the absence of a distal histidine (E-7 His----Leu) in the heme pocket and not to gross structural dissimilarities between the proteins of the different species examined. Primary sequence similarity matrices have been constructed to compare the functional classes of amino acids at homologous positions for the CD and E helices and for the primary heme contacts in human, equine, sperm whale myoglobin, and the Glycera dibranchiata monomer hemoglobin to illustrate this point. They reveal a high correspondence for all globins and do not correlate with the spectroscopic parameters of heme-coordinated CO.  相似文献   

5.
Park HJ  Yang C  Treff N  Satterlee JD  Kang C 《Proteins》2002,49(1):49-60
Erythrocytes of the marine annelid, Glycera dibranchiata, contain a mixture of monomeric and polymeric hemoglobins. There are three major monomer hemoglobin components, II, III, IV (also called GMH2, 3, and 4), that have been highly purified and well characterized. We have now crystallized GMH3 and GMH4 and determined their structures to 1.4-1.8 A resolution. The structures were determined for these two monomer hemoglobins in the oxidized (Fe3+, ferric, or met-) forms in both the unligated and cyanide-ligated states. This work differs from two published, refined structures of a Glycera dibranchiata monomer hemoglobin, which has a sequence that is substantially different from any bona fide major monomer hemoglobins (GMH2, 3, or 4). The high-resolution crystal structures (presented here) and the previous NMR structure of CO-ligated GMH4, provide a basis for interpreting structure/function details of the monomer hemoglobins. These details include: (1) the strong correlation between temperature factor and NMR dynamics for respective protein forms; (2) the unique nature of the HisE7Leu primary sequence substitutions in GMH3 and GMH4 and their impact on cyanide ion binding kinetics; (3) the LeuB10Phe difference between GMH3 and GMH4 and its impact on ligand binding; and (4) elucidation of changes in the structural details of the distal and proximal heme pockets upon cyanide binding.  相似文献   

6.
Three major monomeric hemoglobins have been isolated from the erythrocytes of Glycera dibranchiata. Their importance to structure-function studies of heme proteins lies in the fact that they have been shown to possess an exceptional amino acid substitution. In these proteins, the E-7 position is occupied by leucine rather than the more common distal histidine. This substitution alters the polarity of the heme ligand binding environment compared to myoglobin. Due to this, the G. dibranchiata monomer hemoglobins are attracting much attention. However, until now no purity criterion has been developed. Here we demonstrate that, for all of the Glycera monomer hemoglobins, multiple line patterns are shown on high-voltage isoelectric focusing (IEF) gels. Most of these lines are shown to be a consequence of heme-related phenomena and can be understood on the basis of changes in oxidation and ligation state of the heme iron. The multiple line pattern does not indicate significant impurities in the monomer hemoglobin preparations. Similar behavior is also demonstrated for horse heart myoglobin. The multiple line patterns on IEF gels disappear when gels of the apoproteins alone are focused. Single bands occur in this case for all of the monomer hemoglobins except component II, which displays two bands, one major and one minor. The minor band is found to be a modified apoprotein form. It is sensitive to apoprotein handling prior to focusing and depends upon whether the IEF gel is prefocused or not. From this analysis, IEF is shown to be a valuable purity criterion, and the purity of our monomer hemoglobin component II preparation is 97% one globin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Oxygen and carbon monoxide kinetics of Glycera dibranchiata monomeric hemoglobin have been studied using laser photolysis, air flash, and stopped flow techniques. The reactions of this hemoglobin with both ligands were found to be more rapid than the corresponding reactions involving myoglobin and were also biphasic in nature, the rate constants being approximately an order of magnitude different for the fast and slow phases in each case. No pH or hemoglobin concentration dependence of the pseudo-first order rate constants was apparent between pH 6 and 9 and in the concentration range of 1.25 to 40 muM heme. Both fast and slow pseudo-first order oxygen combination rate constants varied linearly with oxygen concentration between 16 and 1300 muM. A first order slow relaxation was also noted which was linearly dependent on heme concentration and inversely dependent on oxygen concentration. This reaction has been shown to be due to a replacement of oxygen by carbon monoxide. The presence of this reaction is a result of the high affinity of Glycera monomer for carbon monoxide as shown by the partition coefficient Mr = approximately 20,000 ana an equilibrium dissociation constant of the order L = 1.1 X 10(-9) M.  相似文献   

8.
Circular dichroism (CD) and optical rotatory dispersion (ORD) spectra of several liganded derivatives of the monomer and polymer hemoglobin components of the marine annelid, Glycera dibranchiata were measured over the wavelength range 650--195 nm. The differences observed between the monomer and polymer components for the heme dichroic bands in the visible, Soret and ultraviolet wavelength regions seem to result from changes in the heme environment, geometry and coordination state of the central heme iron in these proteins. Within the Soret region, the liganded derivatives of the monomer hemoglobin exhibit predominantly negative circular dichroic bands. The heme band at 260 nm is also absent for the monomer hemoglobin. The ORD and CD spectra in the far-ultraviolet, peptide absorbing region suggest also differences in the alpha-helix content of the monomer and polymer hemoglobins. The values for the single-chain G. dibranchiata hemoglobin are in the expected range (about 70% alpha-helix) as predicted by the X-ray structure of this protein. The lower estimates of the alpha-helix content for the polymer hemoglobin (approx. 50%), may reflect the differences in amino acid composition, primary structure and polypeptide chain foldings. Changes in oxidation state and ligand binding appears to have no pronounced effect on the helicity of either the monomer or polymer hemoglobins. The removal of the heme moiety from the monomer hemoglobin did result in a major decrease in its helix content similar to the loss of heme from myoglobin.  相似文献   

9.
The intracellular hemoglobin (Hb) of the marine polychaete Glycera dibranchiata is comprised of two groups of globins differing in their primary structures and state of aggregation. About six electrophoretically and chromatographically distinct monomeric Hbs which have Leu as the distal residue, and an equal number of polymeric Hbs which have the usual distal His, have been identified to date. Deconvolution of the electrospray ionization mass spectra (ESI-MS) of the Hbs and of their carbamidomethylated, reduced, and reduced/carbamidomethylated forms, using a maximum entropy-based approach (MaxEnt), showed the presence of at least 18 peaks attributable to monomer Hbs (14,500–15,200 Da) and an approximately equal number of polymer Hb peaks (15,500–16,400 Da). Although the ratio of the monomer to polymer components in pooled Hb preparations remained constant at 60:40, Hb from individuals had generally less than 6 monomer and 6 polymer components; 2 of the 19 individuals appeared to be deficient in polymer Hbs. Taking into account possible fragmentations of the known monomeric and polymeric globin sequences, we estimate conservatively that there are 10 monomeric and an equal number of polymeric Hbs, the majority comprising a single free Cys. Surprisingly, the calculated mass of the sequence deduced from the high-resolution monomer Hb crystal structures does not correspond to any of the observed masses. ESI-MS of the monomer Hb crystal revealed 11 components, of which 5, accounting for 67% of total, were related to the three major sequences GMG2–4. These findings underline the need for routine mass spectrometric characterization of all protein preparations. The complete resolution of the Glycera Hb ESI-MS using MaxEnt processing illustrates the power of this method to resolve complex protein mixtures.  相似文献   

10.
The apoprotein of component P1 of the polymeric fraction of the intracellular hemoglobin of the marine polychaete Glycera dibranchiata has been expressed at a high level in Escherichia coli. The expressed globin was reconstituted with heme and purified. The N-terminal sequence of the recombinant P1 is identical to the cDNA-derived sequence of cloned P1 (Zafar et al., Biochem. Biophys. Acta, 1041, 117-123, 1990). Gel filtration, SDS-PAGE, optical spectra over the range 200-650 nm, and circular dichroism over the range 200-250 nm of the purified recombinant P1 were very similar to the polymeric fraction of native Glycera hemoglobin. The molar ellipticity at 222 nm provided an estimate of 77% for the α-helical content of the recombinant P1, in excellent agreement with that calculated from the crystal structure of Glycera monomeric component M-II. Although the oxygen binding affinity of the recombinant P1 is higher than that of the polymeric fraction of Glycera hemoglobin (3-4 torr vs 7-13 torr), which consists of at least six different single-chain hemoglobins, the Hill coefficient is lower (1.0-1.2 vs 1.2-1.4).  相似文献   

11.
P C Simons  J D Satterlee 《Biochemistry》1989,28(21):8525-8530
The three major monomer hemoglobins from Glycera dibranchiata erythrocytes isolated in this laboratory were sequenced from their N-termini. A stretch of amino acid sequence identity was used to determine the sequence of a mixed oligodeoxynucleotide that would be complementary to all 12 possible mRNA sequences coding for the amino acids. A cDNA library was constructed by using poly(A+) RNA from G. dibranchiata erythrocytes, the library was probed with the oligonucleotide, and the longest positive inserts found were subcloned into a sequencing plasmid and then sequenced. The first one was 745 bases long, containing 85 bases of 5'-untranslated RNA, an open reading frame of 444 bases coding for 148 amino acids, and a 3'-untranslated region of 216 bases. The predicted amino acid sequence matches the first 25 amino acids of G. dibranchiata monomer globin component IV. The sequence contains an N-terminal methionine plus 18 other mostly conservative sequence changes compared to the published sequence of Imamura et al. (1972), which appears from our partial sequencing to be monomer globin component II. We confirm the presence of leucine in the E7 position, which is histidine in most myoglobins and hemoglobins.  相似文献   

12.
The intracellular hemoglobin (Hb) of the marine polychaete Glycera dibranchiata is comprised of two groups of globins differing in their primary structures and state of aggregation. About six electrophoretically and chromatographically distinct monomeric Hbs which have Leu as the distal residue, and an equal number of polymeric Hbs which have the usual distal His, have been identified to date. Deconvolution of the electrospray ionization mass spectra (ESI-MS) of the Hbs and of their carbamidomethylated, reduced, and reduced/carbamidomethylated forms, using a maximum entropy-based approach (MaxEnt), showed the presence of at least 18 peaks attributable to monomer Hbs (14,500–15,200 Da) and an approximately equal number of polymer Hb peaks (15,500–16,400 Da). Although the ratio of the monomer to polymer components in pooled Hb preparations remained constant at 60:40, Hb from individuals had generally less than 6 monomer and 6 polymer components; 2 of the 19 individuals appeared to be deficient in polymer Hbs. Taking into account possible fragmentations of the known monomeric and polymeric globin sequences, we estimate conservatively that there are 10 monomeric and an equal number of polymeric Hbs, the majority comprising a single free Cys. Surprisingly, the calculated mass of the sequence deduced from the high-resolution monomer Hb crystal structures does not correspond to any of the observed masses. ESI-MS of the monomer Hb crystal revealed 11 components, of which 5, accounting for 67% of total, were related to the three major sequences GMG2–4. These findings underline the need for routine mass spectrometric characterization of all protein preparations. The complete resolution of the Glycera Hb ESI-MS using MaxEnt processing illustrates the power of this method to resolve complex protein mixtures.  相似文献   

13.
The X-ray crystal structure of the fluoride derivative of Aplysia limacina ferric myoglobin has been solved and refined at 2.0 A resolution; the crystallographic R-factor is 13.6%. The fluoride ion binds to the sixth co-ordination position of the heme iron, 2.2 A from the metal. Binding of the negatively charged ligand on the distal side of the heme pocket of this myoglobin, which lacks the distal His, is associated with a network of hydrogen bonds that includes the fluoride ion, the residue Arg66 (E10), the heme propionate III, three ordered water molecules and backbone or side-chain atoms from the CD region. A comparison of fluoride and oxygen dissociation rate constants of A. limacina myoglobin, sperm whale (Physeter catodon) myoglobin and Glycera dibranchiata monomeric hemoglobin, suggests that the conformational readjustment of Arg66 (E10) in A. limacina myoglobin may represent the molecular basis for ligand stabilization, in the absence of a hydrogen-bond donor residue at the distal E7 position.  相似文献   

14.
The effects of high pressure (0.1-3.4 gigapascal (GPa)) on the ferrous heme active sites of human adult hemoglobin, sperm whale myoglobin, and Glycera dibranchiata hemoglobin (Fraction II) were probed using resonance Raman and absorption spectroscopies. High-to-low spin transitions of the heme iron occur for hemoglobin, myoglobin, and Glycera hemoglobin at 0.35, 0.75, and 0.50 GPa, respectively, for the deoxy species. These interspecies differences result from variations in the composition of the hemepockets and/or their rigidity to pressure-induced volume changes. Heme active sites initially bound to CO or O2 exhibit distinctive behavior at high pressures. For all proteins studied, O2 apparently dissociates from the heme at only moderately high pressure, while CO remains bound to the heme moiety even at extreme pressures. The Raman spectra demonstrate the differences in the ligated and deoxy species at 3.4 GPa in the high frequency region. Discrete changes (i.e. iron spin-state transitions and dissociation of O2) occur that are commensurate with the collapse of the distal pocket, while continuous shifts in the absorption and Raman spectra are observed at pressures above those required for pocket collapse.  相似文献   

15.
1. The Glycera dibranchiata monomer hemoglobin components III and IV display behavior upon high voltage isoelectric focusing which is similar, but not identical to the behavior demonstrated by monomer hemoglobin component II (Constantinidis and Satterlee (1987). Biochemistry 26, 7779-7786). 2. Both components III and IV show multiple line behavior and formation of significant amounts of apoprotein when solutions of each holoprotein are focused on polyacrylamide gels. 3. The apoprotein of each component focuses as a single line, indicating that this is the most unambiguous estimate of purity for these proteins. 4. The purity of the component III and IV preparations can be estimated to be at least 95%.  相似文献   

16.
The coelomic cells of the common marine bloodworm Glycera dibranchiata contain several hemoglobin monomers and polydisperse polymers. We present the refined structure of one of the Glycera monomers at 1.5 A resolution. The molecular model for protein and ordered solvent for the deoxy form of the Glycera monomer has been refined to a crystallographic R-factor of 12.7% against an X-ray diffraction dataset at 1.5 A resolution. The positions of 1095 protein atoms have been determined with a maximum root-mean-square (r.m.s.) error of 0.13 A, and the r.m.s. deviation from ideal bond lengths is 0.015 A and from ideal bond angles is 1.0 degree. The r.m.s. deviation of planar groups from their least-squares planes is 0.007 A, and the r.m.s. deviation for torsion angles is 1.2 degrees for peptide groups and 16.8 degrees for side-chains. A total of 153 water molecules has been located, and they have been refined to a final average occupancy of 0.80. Multiple conformations have been found for five side-chains, and a change has been suggested for the sequence at five residues. The heme group is present in the "reverse" orientation that differs only in the positions of the vinyl beta-carbons from the "normal" orientation. The doming of the heme towards the proximal side, and the bond distances and angles of the heme and proximal histidine are typical of most deoxy globin structures. The substitution of leucine for the distal histidine residue (E7) creates an unusually hydrophobic heme pocket.  相似文献   

17.
The kinetics of the reversible binding of cyanide by the ferric cytochrome c' from Chromatium vinosum have been studied over the pH range 6.9-9.6. The reaction is extremely slow at neutral pH compared to the reactions of other high-spin ferric heme proteins with cyanide. The observed bimolecular rate constant at pH 7.0 is 2.25 X 10(-3) M-1 s-1, which is approximately 10(7)-fold slower than that for peroxidases, approximately 10(5)-fold slower than those for hemoglobin and myoglobin, and approximately 10(2)-fold to approximately 10(3)-fold slower than that recently reported for the Glycera dibranchiata hemoglobin, which has anomalously slow cyanide rate constants of 4.91 X 10(-1), 3.02 X 10(-1), and 1.82 M-1 s-1 for components II, III, and IV, respectively [Mintorovitch, J., & Satterlee, J. D. (1988) Biochemistry 27, 8045-8050; Mintorovitch, J., Van Pelt, D., & Satterlee, J. D. (1989) Biochemistry 28, 6099-6104]. The unusual ligand binding property of this cytochrome c' is proposed to be associated with a severely hindered heme coordination site. Cyanide binding is also characterized by a nonlinear cyanide concentration dependence of the observed rate constant at higher pH values, which is interpreted as involving a change in the rate-determining step associated with the formation of an intermediate complex between the cytochrome c' and cyanide prior to coordination. The pH dependence of both the binding constant for the formation of the intermediate complex and the association rate constant for the subsequent coordination to the heme can be attributed to the ionization of HCN, where cyanide ion binding is the predominant process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Globin gene family evolution and functional diversification in annelids   总被引:1,自引:0,他引:1  
Globins are the most common type of oxygen-binding protein in annelids. In this paper, we show that circulating intracellular globin (Alvinella pompejana and Glycera dibranchiata), noncirculating intracellular globin (Arenicola marina myoglobin) and extracellular globin from various annelids share a similar gene structure, with two conserved introns at canonical positions B12.2 and G7.0. Despite sequence divergence between intracellular and extracellular globins, these data strongly suggest that these three globin types are derived from a common ancestral globin-like gene and evolved by duplication events leading to diversification of globin types and derived functions. A phylogenetic analysis shows a distinct evolutionary history of annelid extracellular hemoglobins with respect to intracellular annelid hemoglobins and mollusc and arthropod extracellular hemoglobins. In addition, dehaloperoxidase (DHP) from the annelid, Amphitrite ornata, surprisingly exhibits close phylogenetic relationships to some annelid intracellular globins. We have characterized the gene structure of A. ornata DHP to confirm assumptions about its homology with globins. It appears that it has the same intron position as in globin genes, suggesting a common ancestry with globins. In A. ornata, DHP may be a derived globin with an unusual enzymatic function.  相似文献   

19.
The thermally induced difference spectra of myoglobin (Mb) and Glycera dibranchiata hemoglobin (Hbm) derivatives and of cytochrome-c were recorded between 4 degrees and 30 degrees C in the 390-750 nm range. Thermodynamic parameters were estimated and upper and lower temperature limiting spectra were deduced for the various heme protein derivatives' equilibria. The effective iron d-electron population divides the hemes broadly into two different groups of behavior type. In the first group, Hbm(III)N3, Hbm(III), Mb(III)(H2O), and Cytc(III) show equilibria between two spin states. The weakest coupling between the heme and the globin occurs among the second group, for Hbm(II)CO and Mb(II)CO, which in the higher temperature limit undergoes averaging of the carbonyl tilt, while an axially elongated geometry is probably accessed for Hbm(II)NO and Mb(II)NO. Examples of the less common situation of increased absorption intensity and/or low-spin states at higher temperature were found in both groups. In the case of the methyl thioglycolate low-spin adducts of Hbm(III), an acid/base equilibrium involving thioglycolate deprotonation occurs. Apparent enthalpy-entropy compensation is exhibited by all these heme derivatives, and it is suggested that the delta H degrees and delta S degrees values relate to the intimacy of coupling between the heme structure and the solvent-dependent microconformation of the globin.  相似文献   

20.
Two-dimensional 1H-NMR methods have been used to assign side-chain resonances for the tryptophan residues and for several amino acids located in the heme pockets of the carbon monoxide complexes of the major monomeric hemoglobins from Glycera dibranchiata. The NMR spectra reveal a high degree of conservation of the heme pocket structure in the different hemoglobins. However some conformational differences are evident and residues at positions B10 and G8 on the distal side of the heme pocket are not conserved. From the present NMR studies it appears that the monomeric G. dibranchiata hemoglobin examined by X-ray crystallography [Padlan, E. A. & Love, W. (1974) J. Biol. Chem. 249, 4067-4078] corresponds to HbC. Except that the orientation of the heme in solution is the reverse of that reported in the crystal structure, there is a close correspondence between the heme pocket structure in the crystal and in solution. The proximal histidine coordination geometry is almost identical in the CO complexes of the three monomeric hemoglobins studied. Distal residues are strongly implicated in determining the observed kinetic differences in ligand binding reactions. In particular, steric crowding of the ligand binding site in hemoglobin A is probably a major factor in the slower kinetics of this component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号