首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influences of 1-octanol and 1-decanol on aqueous multilamellar dispersions of 1-hexadecanoyl(octadecanoyl)-2-[2H31]hexadecanoyl-sn-glycero -3-phosphorylcholine (PC-d31)/cholesterol (3:1) have been examined using 2H-NMR. The gel to liquid crystalline phase transition of the PC-d31/cholesterol dispersion is modulated by the addition of 1-alkanol, which reduces the onset temperature and increases the width of the transition. 1-Octanol has a greater effect on the transition onset and completion temperatures than does 1-decanol, as determined from analysis of the temperature-dependent 2H-NMR spectra. 2H-NMR C-2H bond order parameters as a function of phospholipid acyl chain position at 60 degrees C, where all dispersions are fully liquid crystalline, have been calculated from the depaked spectra. 1-Decanol reduces the phospholipid order by only 2%. This can be attributed to the lower effective cholesterol concentration in the 1-alkanol/PC-d31/cholesterol dispersions. 1-Octanol, however, reduces the phospholipid order by 10% at 60 degrees C. Correlations between the effects of 1-octanol and 1-decanol on phospholipid order parameters and phospholipid/cholesterol phase transitions are discussed.  相似文献   

2.
The 2H-NMR spectra of 50 wt.% aqueous multilamellar dispersions of dipalmitoylphosphatidylcholine (DPPC) containing either selectively deuterated 1-decanol (25 mol%) or [2H17]-1-octanol (25 mol%) have been measured as a function of temperature. Both alkanols are potent anesthetics. A detailed carbon-deuterium bond order parameter profile of 1-decanol in liquid crystalline phospholipid dispersions at 50 degrees C was determined from the quadrupolar splittings of 1-decanols deuterated at eight different positions. A maximum order parameter SCD = 0.20 was obtained for [5,5-2H2]-1-decanol, with labels at both ends of the 1-decanol exhibiting reduced order parameters. Explanations for the reduced order towards the hydroxyl group of 1-decanol are discussed in terms of either increased amplitudes of motion or geometric effects due to hydrogen bonding. By comparing the order parameter profile of sn-2 chain deuterated phosphatidylcholine dispersions containing 25 mol% 1-decanol (J.L. Thewalt, S.R. Wassall, H. Gorrissen and R.J. Cushley, Biochim. Biophys. Acta, 817 (1985) 355) with the profile of deuterated 1-decanol in DPPC, we estimate that decanol is approximately parallel to the C-3 to C-13 region of the phosphatidylcholine's sn-2 chain. Variation of the spectral moments M1 with temperature indicates that both 1-decanol and 1-octanol are sensitive to the packing of the lipid in which they are dissolved. Below the phase transition temperature, the 2H-NMR spectra of either 1-decanol (selectively deuterated) or 1-octanol (perdeuterated) are broad powder patterns, characteristic of axially symmetric rotation about the alcohol's long axis. This is in contrast to the 2H-NMR spectra obtained from deuterated phosphatidylcholine under similar conditions, which implies that the phospholipid acyl chain conformations are more restricted than those of the alcohol at these temperatures. From the M1 behavior of the various alkanol chain segments with temperature, the gel to liquid crystalline phase transition is seen to initiate in the middle of the DPPC/1-alkanol bilayer.  相似文献   

3.
The effects of 5, 10, and 20 mol % incorporation of alpha-tocopherol (vitamin E) on 50 wt % aqueous multilamellar dispersions of sn-2-substituted [2H31]palmitoylphosphatidylcholine (PC-d31), a saturated, deuterated phospholipid prepared from egg lysophosphatidylcholine, have been studied by deuterium nuclear magnetic resonance (2H NMR) and differential scanning calorimetry (DSC). Moment analysis of the 2H NMR spectra as a function of temperature and DSC heating curves demonstrate that the main gel to liquid-crystalline phase transition is progressively broadened and its onset temperature lowered by increasing concentrations of alpha-tocopherol. Below the transition temperature (40 degrees C) for PC-d31 bilayers, the 2H NMR spectra indicate that acyl chain motion is increased by addition of alpha-tocopherol and that this effect extends to lower temperatures with higher alpha-tocopherol content. Above the transition, average carbon-deuterium bond order parameters calculated from the first spectral moment establish that alpha-tocopherol increases acyl chain ordering within the PC-d31 bilayer by as much as 17% at 20 mol % incorporation. Profiles of order parameter vs. chain position, constructed from 2H NMR spectra following application of the depaking technique, show that despite higher order the general form of the profile is not significantly altered by alpha-tocopherol.  相似文献   

4.
Deuterium nuclear magnetic resonance (2H-NMR) spectra have been determined for 50 wt% aqueous dispersions of 1-palmitoyl(stearoyl)-2-[2H31]palmitoyl-sn-glycero-3-phosphocho lin e (PC-d31) containing 20 mol% of the isoprenoid compounds phytol or phytanic acid over the temperature range -5-55 degrees C. Concentration effects of the isoprenoid compounds are also reported. First moments (M1) and order parameters were calculated from the spectra. 20 Mol% of either branched chain compound causes an approximate 9% increase in the mean order parameter SCD. Significant effects are seen on the PC-d31 phase behavior. 20 Mol% of either branched chain compound causes the gel to liquid crystalline onset temperature (Ts) to drop to 28 degrees C from 38 degrees C for PC-d31 alone, as seen from the temperature dependent M1 values. The melting range ([Tl--Ts]) is congruent to 1.5 degrees C for PC-d31 and congruent to 11 degrees C for PC-d31 containing 20 mol% of the branched chain compounds. This is in direct contrast to their straight chain analogues, hexadecanol and palmitic acid, which have been shown to elevate the phase transition temperature. The isoprenoid compounds cause significant disruption of the gel phase, forcing nearest neighbor phospholipid chains apart. Transverse relaxation times (T2e, the time constant for decay of the quandrupolar echo) have been determined over the temperature range -5-50 degrees C. Possible explanation for the effect of the isoprenoid compounds on the dynamic structure of phospholipids in the bilayer are proffered.  相似文献   

5.
Aqueous dispersions of egg-phosphatidylcholine and egg-phosphatidylcholine/30 mol% cholesterol containing deuterated tripalmitin or triolein were studied at approx. 25°C by 2H-NMR. Incorporation of tripalmitin into egg-phosphatidylcholine bilayers was found to be less than 0.1 mol%, while the incorporation of trolein is approx. 2.5 mol% in the absence and approx. 0.7 mol% in the presence of cholesterol. The profile of order parameter versus chain position for deuterated triolein suggests that the oleoyl chains of the triacylglycerol have an average orientation such that the C2 chain segments and the segments in the vicinity of the C9–C10 double bond are tilted with respect to the bilayer normal, while all other segments are parallel to the bilayer normal. Longitudinal relaxation times were also determined and indicate that the acyl chains of triolein have a motional behaviour similar to that of phospholipid acyl chains in the bilayer.  相似文献   

6.
Unilamellar dioleoylphosphatidylcholine (DOPC) liposomes (250 microM) incorporated 2 mol% of [3H]pristane at 37 degrees C after addition of 50 microM pristane solubilized with beta-cyclodextrin. Conventional solubilization in dimethyl sulphoxide resulted in much lower uptake. Premixing of perdeuterated pristane with DOPC and dipalmitoylphosphatidylcholine (DPPC) prior to the formation of multilamellar liposomes resulted in homogeneous incorporation of up to 5 mol% pristane at 22 degrees C and 50 degrees C, respectively, as observed by 2H-NMR. Lipid order parameters measured by 31P and 2H-NMR remained unchanged after pristane uptake. Pristane induced the transformation of part of the dioleoylphosphatidylethanolamine (DOPE)/DOPC (3:1, mol/mol) liquid crystalline lamellar phase into an inverse hexagonal phase. 5 mol% pristane in DPPC bilayers decreased the midpoint of the main phase transition temperature of DPPC from 41.5 degrees C to 40.9 degrees C. Upon cooling in the temperature range from 41 degrees C to 36 degrees C, pristane was either displaced from the DPPC bilayer or the mode of incorporation changed. These results may aid in defining the mechanisms whereby pristane, an isoprenoid C19-isoalkane, induces plasmacytomagenesis in mice.  相似文献   

7.
Cholesteryl oleate, selectively deuterated at various positions along the acyl chain, has been incorporated into fresh human serum low-density lipoprotein (LDL2). Temperature-dependent 2H-NMR spectra were recorded between 15 and 45 degrees C. For deuterons at C-2' and C-5' of the acyl chain, two 2H-NMR spectral components, a broad and a narrow signal, are observed. This is interpreted as reflecting the coexistence of two cholesteryl ester regions in the LDL2 core which possess different degrees of order. The C-2H bond order parameters, SCD, are approx. 0.12-0.20 for the more ordered region and approx. 0.04-0.06 for the less ordered region. Longitudinal relaxation times, T1, of deuterated cholesteryl oleate are found to increase between C-8' and the terminal -C2H3 group, which is consistent with an increased rate of chain motion toward the free ends of the ester acyl chains.  相似文献   

8.
The interaction of UO2(2+) with dipalmitoylphosphatidylcholine (DPPC) has been studied as a function of temperature and composition using nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC), and monolayer studies. Computer simulations of the 31P-NMR powder spectra of DPPC dispersions in the presence of various concentrations of UO2(2+) are consistent with the binding stoichiometry of [UO2(2+)]/[DPPC] = 1:4 at [UO2(2+)]/[DPPC] less than 0.3. This complex undergoes a phase transition to the liquid crystalline phase at T'm = 50 +/- 3 degrees C with a breadth delta T'm = 7 +/- 3 degrees C. This broad transition gradually disappears at higher UO2(2+) concentrations, suggesting the presence of yet another UO2(2+)/DPPC complex (or complexes) whose NMR spectra are indistinguishable from those of the 1:4 UO2(2+)/DPPC species. The temperature-dependent 13C powder spectra of 2(1-13C) DPPC dispersions in the presence of 1.2 mol ratio of UO2(2+) show that this higher order complex (complexes) also undergoes a phase transition to the liquid crystalline state at T'm +/- = 58 +/- 3 degrees C with a breadth delta T"m = 15 +/- 5 degrees C. The NMR spectra indicate that exchange among these various UO2(2+)/DPPC complexes is slow. In addition, computer simulations of the 31P-, 13C-, and 2H-NMR powder spectra show that axial diffusion of the DPPC molecules about their long axes is quenched by addition of UO2(2+) and acyl chain isomerization is the dominant motional mode. The isomerization is best described as two-site hopping of the greater than C-D bond at a rate of approximately 10(6) s-1, a motional mode which is expected for a kink diffusion.  相似文献   

9.
Interactions of melatonin with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) multilamellar liposomes (MLVs) were investigated as a function of temperature and melatonin concentration (1-30 mol%) by using two noninvasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The investigation of the C-H, CO, and PO2- antisymmetric double stretching modes in FTIR spectra and DSC studies reveal that melatonin changes the physical properties of the DPPC bilayers by decreasing the main phase transition temperature, abolishing the pretransition, ordering the system in the gel phase, and increasing the dynamics of the system both in the gel and liquid crystalline phases. It also causes significant decrease in the wavenumber for the CO stretching and PO2- antisymmetric double bond stretching bands, which indicates strong hydrogen bonding The results imply that melatonin locates in the interfacial region of the membrane. Furthermore, in the DSC curve, more than one signal is observed at high melatonin concentrations (24 and 30 mol%), which indicates melatonin-induced phase separation in DPPC membranes.  相似文献   

10.
The effect of 1-alkanols (from 1-butanol up to 1-dodecanol) on the water permeability of dimyristoylphosphatidylcholine vesicle membranes was studied by measuring the osmotic swelling rate as functions of 1-alkanol concentrations and temperatures above the gel-to-liquid-crystalline phase transition. For 1-butanol and 1-hexanol, the activation energy for water permeation was invariant with the addition of alkanols, whereas for 1-octanol, 1-decanol and 1-dodecanol, the activation energy decreased depending on the alkanol concentration, and the extent of the decrease was larger for alkanol with a longer hydrocarbon chain. These results suggests that hydrocarbon moiety beyond seven or eight carbon atoms from the head group in phospholipid molecules constitutes the main barrier for water permeation through the dimyristoylphosphatidylcholine vesicle membrane. The relative volume change of the vesicle due to osmotic swelling increased with the addition of 1-alkanols. Presumably, the membrane structural strength is weakened by the presence of 1-alkanols in the membrane. Contrary to the dependence of the swelling rate upon the alkanol carbon-chain length, no significant difference in the effect on the relative volume changes was seen among the 1-alkanols. This result suggests that weakening of the membrane structure is caused by perturbation of the membrane/water interface induced by incorporation of 1-alkanols into the membrane.  相似文献   

11.
Employing high-sensitivity differential scanning calorimetry (DSC), we discovered a pretransition in binary mixtures of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylglycerol, the main feature of which is its extraordinarily high transition enthalpy of 6.3 Kcal/mol, nearly an order of magnitude higher than those values previously found for such transitions. Using DSC, deuterium nuclear magnetic resonance, and electron microscopy, it is shown that the energetic origin of this type of pretransition is caused by interactions between the phospholipids in their headgroup region. The most likely interaction involves the formation of a hydrogen bond between the headgroups of the two phospholipid species in the gel (L beta') phase which is disrupted at the transition to the "ripple" (P beta') phase. The finding that this large pretransition is unique for mixtures of phosphocholine and phosphoglycerol with myristoyl chains indicates a dependence of the headgroup long range order of such mixtures in the gel phase on the acyl chain length.  相似文献   

12.
The F protein of canine distemper virus (CDV) is a classic type I glycoprotein formed by two polypeptides, F1 and F2. The N-terminal regions of the F1 polypeptides of CDV, measles virus and other paramyxoviruses present moderate to high homology, supporting the existence of a high conservation within these structures, which emphasises its role in viral-host cell membrane fusion. This N-terminal polypeptide is usually termed the fusion peptide. The fusion peptides of most viral fusion-mediating glycoproteins contain a high proportion of hydrophobic amino acids, which facilitates its insertion into target membranes during fusion. In this work we report on the interaction of a 31-residue synthetic peptide (FP31) corresponding to the N terminus of CDV F1 protein with phospholipid membranes composed of various phospholipids, as studied by means of various biophysical techniques. FTIR investigation of FP31 secondary structure in aqueous medium and in membranes resulted in a major proportion of alpha-helical structure which increased upon membrane insertion. Differential scanning calorimetry (DSC) showed that the presence of concentrations of FP31 as low as 0.1 mol%, in mixtures with L-alpha-dimyristoylphosphatidylcholine (DMPC), L-alpha-dipalmitoylphosphatidylcholine (DPPC) and L-alpha-distearoylphosphatidylcholine (DSPC), already affected the thermotropic properties of the gel to liquid-crystalline phase transition. In mixtures with the three lipids, increasing the concentration of peptide made the pretransition to disappear, and lowered and broadened the main transition. This effect was slightly stronger as the acyl chain length of the phospholipid grew larger. In the corresponding partial phase diagrams, no immiscibilities or critical points were observed. FTIR showed that incorporation of 1 mol% of peptide in DPPC shifted the antisymmetric and symmetric CH2 stretching bands to higher values, indicating the existence of an additional disordering of the acyl chain region of the fluid bilayer. FTIR studies of the Cz=O stretching band indicated that incorporation of FP31 into phosphatidylcholine membranes produced a strong dehydration of the polar part of the bilayer. In mixtures with L-alpha-dielaidoylphosphatidylethanolamine (DEPE), increasing FP31 concentrations broadened and shifted to lower temperatures the lamellar to hexagonal-HII phase transition, indicating that this peptide destabilized the bilayer and promoted formation of the hexagonal-HII phase. The results are discussed in terms of lipid-peptide hydrophobic mismatch and its influence on the role of the N-terminal polypeptide of CDV F1 protein in viral membrane fusion.  相似文献   

13.
2H NMR spectra have been observed for several selectively deuterated phospholipid and fatty acid probes intercalated in the liquid crystalline phase of egg phosphatidylcholine in aqueous dispersion. For unsonicated lamellar dispersions and planar multibilayers, quadrupole splittings may be observed which lead directly to a value for the order parameter for the carbon-deuterium bond. Sonicated dispersions yield high-resolution spectra, from which spin-lattice relaxation rates and correlation times for rotational diffusion can be obtained. The presence of cholesterol in the dispersion has no effect on the quadrupole splittings and relaxation rates for 2H in the choline methyl groups, in contrast to its profound effect on the spectra for 2H in the hydrocarbon chains.  相似文献   

14.
We investigated the effect of the antineoplastic drug doxorubicin on the order of the acyl chains in liquid-crystalline mixed bilayers consisting of dioleoylphosphatidylserine (DOPS) or -phosphatidic acid (DOPA), and dioleoylphosphatidylcholine (DOPC) or -phosphatidylethanolamine (DOPE). Previous 2H-NMR studies on bilayers consisting of a single species of di[11,11-2H2]oleoyl-labeled phospholipid showed that doxorubicin does not affect the acyl chain order of pure zwitterionic phospholipid but dramatically decreases the order of anionic phospholipid [de Wolf, F. A., et al. (1991) Biochim. Biophys. Acta 1096, 67-80]. In the present work, we studied mixed bilayers in which alternatively the anionic or the zwitterionic phospholipid component was 2H-labeled so as to monitor its individual acyl chain order. Doxorubicin decreased the order parameter of the mixed anionic and zwitterionic lipids by approximately the same amount and did not induce a clear segregation of the lipid components into extended, separate domains. The drug had a comparable disordering effect on mixed bilayers of unlabeled cardiolipin and 2H-labeled zwitterionic phospholipid, indicating the absence of extensive segregation also in that case. Upon addition of doxorubicin to bilayers consisting of 67 mol% DOPE and 33 mol% anionic phospholipid, a significant part of the lipid adopted the inverted hexagonal (HII) phase at 25 degrees C. This bilayer destabilization, which occurred only in mixtures of anionic phospholipid and sufficient amounts of DOPE, might be of physiological importance. Even upon formation of extended HII-phase domains, lipid segregation was not clearly detectable, since the relative distribution of 2H-labeled anionic phospholipid and [2H]DOPE between the bilayer phase and HII phase was very similar. Our findings argue against a role of extensive anionic/zwitterionic lipid segregation in the mechanism of action and toxicity of doxorubicin.  相似文献   

15.
Phosphatidylcholines were incorporated into hexagonal liquid cyrstalline mixtures of the non-ionic detergents Triton X-100 and octaethyleneglycoldodecylether with D2O. It is shown by nuclear magnetic resonance (NMR) that the phospholipids adopt the hexagonal liquid crystalline structure of the detergent host lattice. The anisotropic motion of the phospholipid headgroups seems to be unaffected, whereas the acyl chains are disordered. Increasing phospholipid concentration leads to separation of a lamellar phase. The lamellar structure is also preferred at elevated temperatures. Phosphatidylcholines with saturated acyl chains undergo a transition from the hexagonal liquid crystalline to an ordered lamellar state. The shape of the 31P-NMR signals suggests that pure gel phase phospholipid separates out. The headgroup region of this gel phase phospholipid becomes immobilized after a few weeks of storage below the transition temperature as judged from 31P-NMR. At the same time 2H-NMR exhibits a new signal from D62O undergoing slow isotropic motion. This behavior bears resemblance to the formation of a coagel in fatty acid-water systems.  相似文献   

16.
We present a combined theoretical (molecular dynamics, MD) and experimental (differential scanning calorimetry, DSC) study of the effect of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) acyl chain-labeled fluorescent phospholipid analogs (C6-NBD-PC and C12-NBD-PC) on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. DSC measurements reveal that < 1 mol% of NBD-PC causes elimination of the pre-transition and a large loss of cooperativity of the main transition of DPPC. Labeling with C6-NBD-PC or C12-NBD-PC shifts the main transition temperature to lower or higher values, respectively. Following our recent report on the location and dynamics of these probes (BBA 1768 (2007) 467-478) in fluid phase DPPC, we present a detailed analysis of 100-ns MD simulations of systems containing either C6-NBD-PC or C12-NBD-PC, focused on their influence on several properties of the host bilayer. Whereas most monitored parameters are not severely affected for 1.6 mol% of probe, for the higher concentration studied (6.2 mol%) important differences are evident. In agreement with published reports, we observed that the average area per phospholipid molecule increases, whereas DPPC acyl chain order parameters decrease. Moreover, we predict that incorporation of NBD-PC should increase the electrostatic potential across the bilayer and, especially for C12-NBD-PC, slow lateral diffusion of DPPC molecules and rotational mobility of DPPC acyl chains.  相似文献   

17.
The impact of low cholesterol concentrations on an egg sphingomyelin bilayer is investigated using 31P magic angle spinning (MAS) NMR spectroscopy. The magnitude of the isotropic 31P MAS NMR line width is used to monitor the main gel to liquid crystalline phase transition, along with a unique gel phase pretransition. In addition, the 31P chemical shift anisotropy (CSA) and spin-spin relaxation times (T2), along with the effects of spinning speed, proton decoupling and magnetic field strength, are reported. The variation of this unique gel phase thermal pretransition with the inclusion of 5 through 21 mol% cholesterol is presented and discussed.  相似文献   

18.
Lipid activation of protein kinase C alpha (PKC alpha) was studied by using a model mixture containing 1, 2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1, 2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS), and 1, 2-dimyristoyl-sn-glycerol (1,2-DMG). This lipid mixture was physically characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and 31P-nuclear magnetic resonance (31P-NMR). Based on these techniques, a phase diagram was constructed by keeping a constant DMPC/DMPS molar ratio of 4:1 and changing the concentration of 1,2-DMG. This phase diagram displayed three regions and two compounds: compound 1 (C1), with 45 mol% 1,2-DMG, and compound 2 (C2), with 60 mol% 1,2-DMG. When the phase diagram was elaborated in the presence of Ca2+ and Mg2+, at concentrations similar to those used in the PKC alpha activity assay, the boundaries between the regions changed slightly and C1 had 35 mol% 1,2-DMG. The activity of PKC alpha was studied at several temperatures and at different concentrations of 1,2-DMG, with a maximum of activity reached at 30 mol% 1,2-DMG and lower values at higher concentrations. In the presence of Ca2+ and Mg2+, maximum PKC alpha activity occurred at concentrations of 1,2-DMG that were close to the boundary in the phase diagram between region 1, where compound C1 and the pure phospholipid coexisted in the gel phase, and region 2, where compounds C1 and C2 coexisted. These results suggest that the membrane structure corresponding to a mixture of 1,2-DMG/phospholipid complex and free phospholipid is better able to support the activity of PKC alpha than the 1,2-DMG/phospholipid complex alone.  相似文献   

19.
The phase heterogeneity of giant unilamellar dinervonoylphosphocholine (DNPC) vesicles in the course of the main phase transition was investigated by confocal fluorescence microscopy observing the fluorescence from the membrane incorporated lipid analog, 1-palmitoyl-2-(N-4-nitrobenz-2-oxa-1,3-diazol)aminocaproyl-sn-glycero-3-phosphocholine (NBDPC). These data were supplemented by differential scanning calorimetry (DSC) of DNPC large unilamellar vesicles (LUV, diameter approximately 0.1 and 0.2 microm) and multilamellar vesicles (MLV). The present data collected upon cooling reveal a lack of micron-scale gel and fluid phase coexistence in DNPC GUVs above the temperature of 20.5 degrees C, this temperature corresponding closely to the heat capacity maxima (T(em)) of DNPC MLVs and LUVs (T(em) approximately 21 degrees C), measured upon DSC cooling scans. This is in keeping with the model for phospholipid main transition inferred from our previous fluorescence spectroscopy data for DMPC, DPPC, and DNPC LUVs. More specifically, the current experiments provide further support for the phospholipid main transition involving a first-order process, with the characteristic two-phase coexistence converting into an intermediate phase in the proximity of T(em). This at least macroscopically homogenous intermediate phase would then transform into the liquid crystalline state by a second-order process, with further increase in acyl chain trans-->gauche isomerization.  相似文献   

20.
The effect of cholesterol on the bilayer phase behavior of heteroacid phosphatidylcholines with one unsaturated fatty acid depends on the nature of the unsaturated chain. Previous differential scanning calorimetry (DSC) studies showed that 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (16:0-18:2 PC) had a broad, weak transition at about -18 degrees C, which was effectively eliminated by less than 15 mol% cholesterol. Phospholipids with greater and lesser degrees of unsaturation displayed stronger phase transitions and less sensitivity to cholesterol. In this work, deuterium nuclear magnetic resonance has been used to examine the phase behavior of 1-perdeuteriopalmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (16:0-18:2 PC-d31) alone, and with 15 mol % cholesterol. The behavior is found to be sensitive to sample thermal history. Moderately fast cooling (1 degree/h) results in a continuous phase change from a fluid to an ordered phase in the pure lipid. Under similar cooling conditions, the sample containing cholesterol displays increased chain order and a continuous phase change with no apparent isothermal transition. However, when these systems are cooled at a reduced rate (0.3 degree/h), the continuous phase change is pre-empted by a sharp transition into a more ordered phase that gives a deuterium spectrum having intensity at a value of the quadrupole-splitting characteristic of a rigid lattice system. In the pure lipid, this transition effectively coincides with the center of the continuous phase change. Addition of 15 mol % cholesterol lowers the temperature of this sharp transition by about 3 degrees C. These observations provide some insights into the behavior of this system seen using differential scanning calorimetry. Results of deuteron transverse relaxation measurements under these conditions are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号