首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The major capsid protein of polyomavirus, VP1, has been expression cloned in Escherichia coli, and the recombinant VP1 protein has been purified to near homogeneity (A. D. Leavitt, T. M. Roberts, and R. L. Garcea, J. Biol. Chem. 260:12803-12809, 1985). With this recombinant protein, a nitrocellulose filter transfer assay was developed for detecting DNA binding to VP1 (Southwestern assay). In optimizing conditions for this assay, dithiothreitol was found to inhibit DNA binding significantly. With recombinant VP1 proteins deleted at the carboxy and amino termini, a region of the protein affecting DNA binding was identified within the first 7 amino acids (MAPKRKS) of the VP1 amino terminus. Southwestern analysis of virion proteins separated by two-dimensional gel electrophoresis demonstrated equivalent DNA binding among the different VP1 isoelectric focusing subspecies, suggesting that VP1 phosphorylation does not modulate this function. By means of partial proteolysis of purified recombinant VP1 capsomeres for assessing structural features of the protein domain affecting DNA binding, a trypsin-sensitive site at lysine 28 was found to eliminate VP1 binding to DNA. The binding constant of recombinant VP1 to polyomavirus DNA was determined by an immunoprecipitation assay (R. D. G. McKay, J. Mol. Biol. 145:471-488, 1981) to be 1 x 10(-11) to 2 x 10(-11) M, which was not significantly different from its affinity for plasmid DNA. McKay analysis of deleted VP1 proteins and VP1-beta-galactosidase fusion proteins indicated that the amino terminus was both necessary and sufficient for DNA binding. As shown by electron microscopy, DNA inhibited in vitro capsomere self-assembly into capsidlike structures (D. M. Salunke, D. L. D. Caspar, and R. L. Garcea, Cell 46:895-904, 1986). Thus, VP1 is a high-affinity, non-sequence-specific DNA-binding protein with the binding function localized near its trypsin-accessible amino terminus. The inhibitory effects of disulfide reagents on DNA binding and of DNA on capsid assembly suggest possible intermediate steps in virion assembly.  相似文献   

3.
4.
Gene traI of the Escherichia coli F sex factor which encodes DNA helicase I was subcloned in a lambda pL-based plasmid vector and expressed in a background of pL non-repressing cells. Neither the non-repressed pL promoter nor the production of a high level of functional helicase I are toxic. Enzyme purified from this source was studied in the electron microscope. The results show that helicase I binds cooperatively to single-stranded DNA. DNA covered with the helicase appears in fixed, negatively stained specimens as a smooth-contoured filament with a diameter of 12.5 +/- 0.4 nm and an axial periodicity of 7.0 +/- 0.2 nm. In unfixed specimens, discrete particles with axes of 12.7 +/- 0.5 nm and 7.2 +/- 0.5 nm are visible. They are consistent in size with helicase I monomers (Mr 180,000) suggesting that the molecule is almost isometric, despite a frictional ratio of 1.71 calculated from its diffusion coefficient. Helicase I free of DNA appears as aggregates. For comparison, a truncated traI, lacking coding for the amino-terminus of the product, was cloned by fusing it to an MS2 replicase gene fragment. The chimeric gene product (named helicase I del29) retains strand-separating activity although it fails to show cooperative DNA binding behavior. Judged from the length of the helicase-I-specific sequence of this polypeptide, traI is located 1.3 kb nearer to the distal end of the F transfer operon compared to the position proposed in a previous genetic map. The revised location of traI has implications for understanding distal functions of the transfer operon.  相似文献   

5.
6.
Two chromosomal high mobility group (HMG) proteins from larvae of Chironomus thummi (Diptera) and from an epithelial cell line of Chironomus tentans were purified to homogeneity and chemically characterized. cDNA clones encoding these proteins were isolated from an expression library using an immunoscreening approach and were sequenced. The deduced amino acid sequences revealed their homology to HMG protein 1 of vertebrates. These insect proteins have therefore been designated cHMG1a and cHMG1b. They have a molecular mass of 12,915 and 12,019 kDa, respectively, and preferentially bind to AT-rich DNA. Indirect immunofluorescence microscopy with a polyclonal antibody showed the presence of cHMG1a and cHMG1b in condensed chromomeres but not in puffs, nucleoli, and cytoplasm. The cHMG1a and cHMG1b genes were both localized to a single band in region 14 of chromosome 1 of C. tentans and appear to be single copy genes. An immunologically related protein was purified from Drosophila melanogaster Kc cells. Its size and amino acid composition indicate that it is an HMG1 of D. melanogaster. On the other hand, our antibody did not recognize calf HMG1. The identification and characterization of HMG1 proteins in insects with polytene chromosomes opens new possibilities for studying function(s) of this group of chromosomal proteins.  相似文献   

7.
Purification and properties of a yeast protein kinase.   总被引:7,自引:0,他引:7  
K Lerch  L W Muir  E H Fischer 《Biochemistry》1975,14(9):2015-2023
A protein phosphokinase (EC 2.7.1.1.37) was isolated from baker's yeast (Saccharomyces cerevisiae) after a 17,000-fold purification; the purified enzyme is homogeneous according to the criteria of gel electrophoresis and ultracentrifuge analysis. The enzyme has a high isoelectric point of ca. 9 and appears to exist as a monomer with a molecular weight of 42,000 plus or minus 1500. It is neither stimulated by cyclic 3',5'-AMP, -GMP, -CMP or -ump nor inhibited by the regulatory subunit of rabbit muscle protein kinase (Reimann, E. M., Walsh, D. A., and Krebs, E. G. (1971), J. Biol. Chem. 246, 1986). In the presence of divalent metal ions, preferably Mg-2+ or Mn-2+, the enzyme readily transfers the terminal phosphate group of ATP to phosvitin, alphaS1B- and beta a-casein and an NH2-terminal tryptic peptide derived from beta a-casein, but not to protamine, lysine, or arginine-rich histones or to yeast enzymes such as phosphorylase, phosphofructokinase, or pyruvate carboxylase; serine and polyserine were also inactive as phosphate acceptors. Km values of 0.17 mM for beta a-casein and 0.2 mMfor ATP were determined at 10 mM Mg-2+. The urified yeast protein kinase also catalyzes the reverse reaction, namely, the transfer of phosphate from fully phosphorylated beta a-casein or its NH2-terminal peptide to ADP resulting in the formation of ATP. AMP, GDP, UDP, and CDP did not serve as phosphate acceptors in this reaction. As observed by Rabinowitz and Lipmann (Rabinowitz, M., and Lipmann, F. (1960), J. Biol. Chem. 235, 1043) both reactions have different pHoptima with values of 7.5 for the forward reaction (phosphorylation of the proteins) and ca 5.2 for the formation of ATP; both are differently affected by salts. Phosphorylation of beta a-casein with [gamma-32-P]ATP followed by digestion of the labeled protein with trypsin indicated that all the radioactivity was exclusively introduced in an NH2-terminal peptide possessing the unique sequence: Glu-Ser(P)-Leu-Ser(P)-Ser(P)-Ser(P)-Glu-Glu...(Ribadeau-Dumas, B., Brignon, G., Grosclaude, F., and Mercier, J.-C. (1971), eur J. Biochem. 20, 264). By subjecting beta a-casein and its NH2-terminal peptide to the combined action of almond acid phosphatease and purified yeast protein kinase, it was determined that the phosphorylation and dephosphorylation reactions proceed randomly, i.e., all seryl phosphate residues are equally susceptible and that the rate of phosphorylation decreases drastically as the number of bound phosphate groups in the substrate diminishes.  相似文献   

8.
The adenovirus DNA-binding protein (DBP) is a multifunctional protein that is essential for viral DNA replication. DBP binds both single-stranded and double-stranded DNA as well as RNA in a sequence-independent manner. Previous studies showed that DBP does not promote melting of duplex poly(dA-dT) in contrast to prokaryotic single-strand-binding proteins. However, here we show that DBP can displace oligonucleotides annealed to single-stranded M13 DNA. Depending upon the DBP concentration, strands of at least 200 nucleotides can be unwound. Although unwinding of short (17-bp), fully duplex DNA is facilitated by DBP, unwinding of larger (28-bp) duplexes is only possible if single-stranded protruding ends are present. These protruding ends must be at least 4 nucleotides long for optimal unwinding, and both 5' and 3' single-stranded overhangs suffice. DBP-promoted strand displacement is sensitive to MgCl2 and NaCl and not dependent upon ATP. Our results suggest that DBP, through formation of a protein chain on the displaced strand, may destabilize duplex DNA ahead of the replication fork, thereby assisting in strand displacement during replication.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
A synthetic cruciform DNA (X-DNA) was used for screening cellular extracts of Saccharomyces cerevisiae for X-DNA-binding activity. Three X-DNA-binding proteins with apparent molecular mass of 28kDa, 26kDa and 24kDa, estimated by SDS-PAGE, were partially purified. They were identified as N-terminal fragments originating from the same putative protein, encoded by the open reading frame YHR146W, which we named CRP1 (cruciform DNA-recognising protein 1). Expression of CRP1 in Escherichia coli showed that Crp1p is subject to efficient proteolysis at one specific site. Cleavage leads to an N-terminal subpeptide of approximately 160 amino acid residues that is capable of binding specifically X-DNA with an estimated dissociation constant (K(d)) of 800nM, and a C-terminal subpeptide of approximately 305 residues without intrinsic X-DNA-binding activity. The N-terminal subpeptide is of a size similarly to that of the fragments identified in yeast, suggesting that the same cleavage process occurs in the yeast and the E.coli background. This makes the action of a site-specific protease unlikely and favours the possibility of an autoproteolytic activity of Crp1p. The DNA-binding domain of Crp1p was mapped to positions 120-141. This domain can act autonomously as an X-DNA-binding peptide and provides a new, lysine-rich DNA-binding domain different from those of known cruciform DNA-binding proteins (CBPs). As reported earlier for several other CBPs, Crp1p exerts an enhancing effect on the cleavage of X-DNA by endonuclease VII from bacteriophage T4.  相似文献   

17.
Abf2p, a mitochondrial DNA-binding protein of yeast Saccharomyces cerevisiae, was selectively detected among mitochondrial nucleoid proteins by SDS-DNA polyacrylamide gel electrophoresis (SDS-DNA PAGE) followed by ethidium bromide staining. This method is simple and specific for the detection of Abf2p, and it may be used to identify an Abf2p-like protein that is present in mitochondrial nucleoids from other yeasts.  相似文献   

18.
Homeodomain proteins are a highly conserved class of DNA-binding proteins that are found in virtually every eukaryotic organism. The conserved mechanism that these proteins use to bind DNA suggests that there may be at least a partial DNA recognition code for this class of proteins. To test this idea, we have investigated the sequence-specific requirements for DNA binding and repression by the yeast alpha2 homeodomain protein in association with its cofactors, Mcm1 and Mata1. We have determined the contribution for each residue in the alpha2 homeodomain that contacts the DNA in the co-crystal structures of the protein. We have also engineered mutants in the alpha2 homeodomain to alter the DNA-binding specificity of the protein. Although we were unable to change the specificity of alpha2 by making substitutions at residues 47, 54, and 55, we were able to alter the DNA-binding specificity by making substitutions at residue 50 in the homeodomain. Since other homeodomain proteins show similar changes in specificity with substitutions at residue 50, this suggests that there is at least a partial DNA recognition code at this position.  相似文献   

19.
Summary The DNA binding properties of the nonhistone chromosomal protein NH 30 000 from lymphocytes were investigated by equilibrium competition experiments employing nitrocellulose filters. The results show that protein NH 30 000 interacts preferentially with single-stranded DNA, with AT-rich sequences and with repetitive DNA. Binding to RNA, however, is poor, with different RNAs exhibiting different competitive abilities.  相似文献   

20.
We report the purification and some of the biochemical properties of yolk protein factor I (YPF1). This protein binds to a specific site in the yolk protein 1 gene (yp1) of Drosophila melanogaster. YPF1 has been purified to 95% homogeneity and consists of a heterodimer of two subunits with molecular weights 85,000 and 69,000. The protein is highly asymmetric with a frictional ratio of 1.56 which leads to calculated dimensions of 510 x 51 A when modeled as a prolate ellipsoid of revolution. It binds the yp1 DNA site with a protein/DNA stoichiometry of 1:1. Binding to that site is essentially irreversible with a dissociation rate constant of koff less than or equal to 2 x 10(-7) s-1, which gives the complex a dissociation half-life of approximately 55 days. The measured apparent second order association rate constant is 4 x 10(8) M-1 s-1 resulting in a calculated equilibrium dissociation constant of KD less than or equal to 5 x 10(-16) M. YPF1 also has a 10(8) selectivity for the yp1 site over poly(dA).poly(dT) (KDapp = 2 x 10(-8) M(nucleotide].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号