首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Ehrlich ascites tumor cell membrane potential (Vm) and intracellular Na+, K+ and Cl- activities were measured under steady-state conditions in normal saline medium (Na+ = 154, K+ = 6, Cl- 150 mequiv./l). Membrane potential was estimated to be -23.3 +/- 0.8 mV using glass microelectrodes. Intracellular ion activities were estimated with similar glass electrodes rendered ion-selective by incorporation of ion-specific ionophores. Measurements of Vm and ion-activity differences were made in the same populations of cells. Under these conditions the intracellular Na+, K+ and Cl- activities are 4.6 +/- 0.5; 68.3 +/- 8.0; and 43.6 +/- 2.1 mequiv./l, respectively. The apparent activity coefficients for Na+ and K+ are 0.18 +/- 0.02 and 0.41 +/- 0.05 respectively. These are significantly lower than the activity coefficients expected for the ions in physiological salt solutions (0.71 and 0.73, respectively). The activity coefficient for intracellular Cl- (0.67 +/- 0.03), however, is close to that of the medium (0.73), and the transmembrane electrochemical potential difference for Cl- is not different from zero. The results establish that the energy available from the Na+ electrochemical gradient is much greater than previously estimated from chemical measurements.  相似文献   

2.
The interaction of quinine with K+ and Na+ transport mechanisms has been investigated in Ehrlich ascites tumor cells. Quinine affects both Ca2+-dependent K+ channel and total K+ influx. Activation of Ca+-dependent K+ channels by propranolol is abolished by quinine (1 mM). In addition, quinine inhibits the ouabain-sensitive component of K+ influx with an apparent Ki of 0.32 +/- 0.02 mM and the furosemide-sensitive component with a Ki of 0.24 +/- 0.01 mM. Furthermore, a significant fraction (52%) of Na+ influx is inhibited by quinine. The same component is sensitive to amiloride, suggesting that it represents Na+/H+ antiport. Concomitant with the inhibition of K+ and Na+ transport, quinine stimulates ATP hydrolysis by 57%. The results suggest that quinine exerts broad, nonspecific effects on cellular mechanisms which serve to regulate cation transport in Ehrlich cells.  相似文献   

3.
The membrane potential of the Ehrlich ascites tumor cell was shown to be influenced by its amino acid content and the activity of the Na+ :K+ pump. The membrane potential (monitored by the fluorescent dye, 3,3'-dipropylthiodicarbocyanine iodide) varied with the size of the endogenous amino acid pool and with the concentration of accumulated 2-aminoisobutyrate. When cellular amino acid content was high, the cells were hyperpolarized; as the pool declined in size, the cells were depolarized. The hyperpolarization seen with cellular amino acid required cellular Na+ but not cellular ATP. Na+ efflux was more rapid from cells containing 2-aminoisobutyrate than from cells low in internal amino acids. These observations indicate that the hyperpolarization recorded in cells with high cellular amino acid content resulted from the electrogenic co-efflux of Na+ and amino acids. Cellular ATP levels were found to decline rapidly in the presence of the dye and hence the influence of the pump was seen only if glucose was added to the cells. When the cells contained normal Na+ (approx. 30mM), the Na+ :K+ pump was shown to have little effect on the membrane potential (the addition of ouabain had little effect on the potential). When cellular Na+ was raised to 60mM, the activity of the pump changed the membrane potential from the range -25 to -30 mV to -44 to -63 mV. This hyperpolarization required external K+ and was inhibited by ouabain.  相似文献   

4.
We have shown previously that proteoliposomes reconstituted with purified Na+K+-ATPase from Ehrlich ascites tumor cells, transport Na+ with low efficiency (Spector, M., O'Neal, S. and Racker, E. (1980) J. Biol. Chem., 255, 5504-5507). We now present evidence that this low efficiency (expressed in the ratio of Na+-transported/ATP-hydrolyzed) is caused by the phosphorylation of the beta subunit of the Na+K+-ATPase by an endogenous protein kinase. On addition of [gamma-32P]ATP, crude tumor plasma membrane preparations phosphorylated the beta subunit of the ATPase, whereas crude mouse brain plasma membranes did not. However, solubilized Na+K+-ATPase from either tumor or brain wre phosphorylated by purified protein kinase from the tumor plasma membrane and dephosphorylated by a phosphatase. In both cases, the phosphorylated enzyme was inefficient; the dephosphorylated enzyme was efficient after reconstitution into liposomes. During isolation of the Na+K+-ATPase from Ehrlich ascites tumor or mouse brain, an endogenous protease partially cleaved from the beta subunit a polypeptide of 29,000 daltons that contained the phosphorylation site. The proteolytic cleavage of the beta subunit was partially inhibited by phenylmethylsulfonyl fluoride and the major site of phosphorylation was then seen in the 53,000-dalton beta subunit of the enzyme. The isolated 29,000-dalton polypeptide from mouse brain ATPase was phosphorylated by tumor protein kinase with a stoichiometry of 1 mol of phosphate/mol of protein. When this 29,000-dalton polypeptide from mouse brain was incorporated into the tumor Na+K+-ATPase after mild proteolytic digestion, a marked increase in efficiency was observed after reconstitution of the Na+ pump.  相似文献   

5.
6.
7.
The possible presence and properties of the Ca2+-dependent K+ channel have been investigated in the Ehrlich ascites tumor cell. The treatment with ionophore A23187 + CA2+, propranolol or the electron donor system ascorbate-phenazine methosulphate, all of which activate that transport system in the human erythrocyte, produces in the Ehrlich cell a net loss of K+ (balanced by the uptake of Na+) and a stimulation of both the influx and the efflux of 86Rb. These effects were antagonized by quinine, a known inhibitor of the Ca2+-dependent K+ channel in other cell systems, and by the addition of EGTA to the incubation medium. Ouabain did not have an inhibitory effect. These results suggests that the Ehrlich cell possesses a Ca2+-dependent K+ channel whose characteristics are similar to those described in other cell systems.  相似文献   

8.
The effect of Ca+2 on the transport and intracellular distribution of Na+ and K+ in Ehrlich ascites tumor cells was investigated in an effort to establish the mechanism of Ca+2-induced hyperpolarization of the cell membrane. Inclusion of Ca+2 (2 mM) in the incubation medium leads to reduced cytoplasmic concentrations of Na+, K+ and Cl- in steady cells. In cells inhibited by ouabain, Ca+2 causes a 41% decrease in the rate of net K+ loss, but is without effect on the rate of net Na+ accumulation. Net K+ flux is reduced by 50%, while net Na+ flux is unchanged in the transport-inhibited cells. The membrane potential of cells in Ca+2-free medium (-13.9 +/- 0.8 mV) is unaffected by the addition of ouabain. However, the potential of cells in Ca+2-containing medium (-23.3 +/- 1.2 mV) declines in one hour after the addition of ouabain to values comparable to those of control cells (-15.2 +/- 0.7 mV). The results of these experiments are consistent with the postulation that Ca+2 exerts two effects on Na+ and K+ transport. First, Ca+2 reduces the membrane permeability to K+ by 25%. Second, Ca+2 alters the coupling of the Na/K active transport mechanism leading to an electrogenic hyperpolarization of the membrane.  相似文献   

9.
The activation of Ca2+-dependent K+ channel by propranolol or by ascorbate-phenazine methosulphate stimulates Na+-dependent transport of α-aminoisobutyric acid. This stimulation arises from a membrane hyperpolarization due to the specific increase of membrane K+ conductance. The same treatment does not modify the Na+-independent uptake of the norbornane amino acid.  相似文献   

10.
Cyclic AMP-independent protein kinase activities from Ehrlich ascites tumor cells, partially purified by DEAE-cellulose and phosphocellulose chromatography were inhibited by quercetin. The cyclic AMP in the tumor ascites cells and the cyclic AMP-dependent protein kinase activity from this tumor and from bovine and mouse tissues were unaffected by this drug. Since we reported that quercetin elevates cyclic AMP level in Ehrlich ascites tumor cells, this bioflavonoid may have a dual effect on the protein kinae activities in these cells, thus, increasing the cyclic AMP-dependent and decreasing the cyclic AMP-independent protein kinase activities.  相似文献   

11.
The activation of Ca2+ -dependent K+ channel by propranolol or by ascorbate-phenazine methosulphate stimulates Na+ -dependent transport of alpha-aminoisobutyric acid. This stimulation arises from a membrane hyperpolarization due to the specific increase of membrane K+ conductance. The same treatment does not modify the Na+ -independent uptake of the norbornane amino acid.  相似文献   

12.
13.
The concentration gradients of Na+ and the non-metabolizable amino acid, α-aminoisobutyric acid, and the membrane potential were measured in cytoplasts derived from Ehrlich ascites tumor cells in order to test the Na+ gradient hypothesis for the active transport of neutral amino acids in animal cells. According to this hypothesis, the Na+ electrochemical gradient and the amino acid activity gradient should be equal at the steady state. It has been difficult to measure the Na+ electrochemical gradient in intact Ehrlich cells because Na+ may be sequestered in the nuclei of these cells. This problem is avoided with cytoplasts derived from Ehrlich cells because they do not contain internal compartments where Na+ could be sequestered. Since these cytoplasts also maintain steady state concentrations of Na+, K+, and α-aminoisobutyric acid similar to those found in whole Ehrlich cells, they are uniquely suited for testing the Na+ gradient hypothesis. Assuming the activity coefficients of external and cytoplasmic Na+ are equal, the energy in the Na+ electrochemical gradient of cytoplasts was 90% of that in the α-aminoisobutyric acid concentration gradient at the steady state. If the Na+ gradient hypothesis is correct, the 10% difference between these two gradients cannot be explained in terms of the sequestration of Na+ in the nucleus because cytoplasts do not contain internal compartments.  相似文献   

14.
The effects of altered external sodium and potassium concentrations on steady state, active Na+ + K+ transport in Ehrlich ascites tumor cells have been investigated. Membrane permeability to Na+ and K+, intracellular [Na+] and [K+], and membrane potential were measured. Active cation fluxes were calculated as equal and membrane potential were measured. Active cation fluxes were calculated as equal and opposite to the net, diffusional leak fluxes. Elevation of external K+ (6–60 Mm)by equivalent replacement of Na+ (154–91 mM) inhibits both active Na+ and K+ fluxes, but not proportionally. This results in a decrease of the coupling ratio (rp = -Jkp/J) as external K+ is increased. Elevation of external K+ (3–68 mM) at constant Na+ (92mM) inbibits J, but is without effect on J. The coupling ratio declines from 1.01 ± 0.14 to 0.07 ± 0.05, a 14-fold alteration. Reduction of external Na+ (154–25 mM) at constant K+ (6mM) depresses J, but is without effect on J. The coupling ratio increases from 0.63 ± 0.04 at 154 mM Na+ to 4.5 ± 2.04 at 25 mM Na+. The results of this investigation are consistent with the independent regulation of active cation fluxes by the transported species. Kinetic analysis of the data indicates that elevation of external sodium stimulates active sodium efflux by interacting at “modifier sites” at the outer cell surface. Similarly, external potassium inhibits active potassium influx by interaction at separate modifier sites.  相似文献   

15.
The fatty acid composition of plasma membrane derived from Ehrlich ascites tumor cells was altered in vivo by changing the dietary lipid of the tumor-bearing mice. The activity of (sodium + potassium)-adenosinetriphosphatase ((Na+ + K+ATPase), in partially purified plasma membranes, was measured ass a function of temperature. Arrhenius plots of the data were biphasic. Striking differences, dependent on the membrane fatty acid composition, were observed in the transition temperature and in the energies of activation below the transition temperature. The transition temperatures for the (Na+ + K+)-ATPase of plasma membrane derived from tumor cells grown in mice fed a regular chow diet containing a mixture of fatty acids (PMC), a 16% sunflower oil diet (PMSU), or a 4% tristearin diet (PMTS) were 20, 21, and 13.5 degrees C, respectively...  相似文献   

16.
17.
18.
In Na+- and K+-free solution, an inward-directed current can be detected in Xenopus oocytes, which is inhibited by cardic glycosides and activated by ATP. Therefore, it is assumed to be generated by the Na+, K+ pump. At negative membrane potentials, the pump current increases with more negative potentials and with increasing [H+] in the external medium. This current is not observed when Mg2+ instead of Ba2+ is the only divalent cation present in the bath medium, and it does not depend on whether Na+ or K+ is present internally. At 5 to 10 mM Na+ externally, maximum pump-generated current is obtained while no current can be detected in presence of physiological [Na+]. It is suggested that in low-Na+ and K+-free medium the Na+, K+ pump molecule can either form a conductive pathway that is permeable to Ba2+ or protons or operate in its conventional transport mode accepting Ba2+ as a K+ congener. A reversed pump mode or an electrogenic uncoupled Na+-efflux mode is excluded.  相似文献   

19.
Amino acid transport systems for alanine and leucine have been reconstituted into artificial lipid vesicles. Purified plasma membrane vesicles from Ehrlich ascites cells were dissolved in 2% sodium cholate, 1 mM dithiothreitol, 0.5 mM EDTA, a mixture which solubilized approximately 50% of the membrane protein. This solubilized protein fraction was further purified by a combination of ammonium sulfate precipitations, gel filtration, and DEAE-cellulose chromatography. A fraction containing approximately 15 Coomassie blue staining bands on sodium dodecyl sulfate gels was obtained. This material was reconstituted into liposomes, and preliminary results demonstrated transport of alanine and leucine dependent on a sodium gradient. In addition, an electrogenic gradient mediated by valinomycin-induced potassium diffusion seemed to stimulate alanine uptake further.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号