首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
mdr-1和bcl-2基因在K562/ADM多药耐药细胞中的共表达   总被引:1,自引:0,他引:1  
为探讨肿瘤细胞多药耐药(MDR)形成的分子机理,本文观察了mdr-1、bcl-2和bax基因及其编码蛋白在人红白血病细胞株K562/ADM中的可能共表达。结果显示,在K562/ADM细胞中,在以mdr-1及P-gp过度表达为 特征的MDR形成时,其bcl-2及产物Bcl-2也过度表达,其中Bcl-2的表达阳性率约为相应敏感株K562的11倍;而Bax在二种细胞中均呈阳性表达,但无显著差异(P>0.05),提示bcl-2基因在mRNA和蛋白水平上的过度表达可能是K562/ADM细胞MDR形成时细胞凋亡耐受的分子基础。  相似文献   

2.
目的:体外观察树突状细胞(dendritic cell,DC)联合细胞因子诱导的杀伤细胞(cytokine inducedkiller,CIK)对K562/A细胞株多药耐药基因mdr1表达的影响。方法:采集健康人的外周血,分离出单个核细胞(peripheral blood mononuclear cell,PBMC),在体外加入多种细胞因子经诱导生成DC及CIK细胞,以流式细胞仪检测其表面标志,将DC细胞内加入K562/A细胞裂解物致敏后,再与CIK细胞混合培养48小时。将致敏后的DC-CIK细胞与K562/A及K562分组培养后以荧光定量PCR检测其mdr1基因表达的情况,PBMC作为对照组。结果:RT-PCR中可见K562/A+DC-CIK组中mdr1 mRNA表达较K562/A明显降低,经荧光定量PCR观察到K562/A内mdr1 mRNA表达为K562的10.27倍、K562/A/PBMC略低于未处理的K562/A(P〉0.05),K562/A/DC-CIK细胞中mdr1 mRNA含量较K562/A、K562/A/PBMC少(P〈0.05)。DC-CIK细胞与细胞株混合培养后,mdr1基因表达较混合培养前明显降低。结论:实验数据显示DC-CIK可使耐药细胞株内mdr1基因表达下调。但K562与DC-CIK混合培养后该基因降低不明显,提示该基因在细胞中存在着基础表达,意义在于维持细胞内稳态。目前针对逆转白血病耐药的研究较少,需要多进行相关研究以拓宽细胞免疫治疗在逆转耐药领域的应用。DC-CIK是具有发展潜力的抗肿瘤方法。本实验将为下一阶段研究逆转耐药的机制提供依据,DC-CIK细胞免疫疗法有望成为逆转肿瘤耐药的新方法。  相似文献   

3.
The p53 null HL-60 cell line was transfected with plasmids coding for either the wild-type p53 or mutant p53 gene. The stable expression of wild-type p53 resulted in a significant increase in sensitivity to the topoisomerase II poisons etoposide and doxorubicin, but not to the topoisomerase II inhibitors razoxane and ADR-529. HL-60 cells expressing wild-type p53 demonstrated 8- to 10-fold more VP-16 induced DNA breaks by the alkaline elution assay. The effect of inducible expression of wild-type p53 was also studied in the p53 null erythroblastoid cell line K562 and in the human squamous carcinoma cell line SqCC. The inducible expression of wild-type p53 in the K562 cell line resulted in a 3-fold increase in sensitivity to VP-16. The quantity of topoisomerase IIalpha was not altered by the transfection as determined by immunoblotting, while the amount of the beta isoform was increased 2.5-fold in HL-60 cells. The topo II catalytic activity present in nuclear extracts was measured as the decatenation of kinetoplast DNA, and found to be unaltered by p53 expression. Immunostaining for topoisomerase IIalpha was substantially diminished in both stable and inducible wild-type p53 expressing cells when three different antibodies were used (two polyclonal and one monoclonal). However, the addition of VP-16 resulted in a rapid appearance of nuclear fluorescence for topoisomerase IIalpha. No changes in topoisomerase IIbeta immunostaining were observed. These results suggest that an epitope for topoisomerase IIalpha is concealed in cells expressing wild-type p53 and that a complex between topoisomerase IIalpha and p53 may be disrupted by the addition of antitumor drugs.  相似文献   

4.
5.
目的:建立能稳定、高效表达细胞因子信号转导抑制因子-3(SOCS-3)的细胞株SOCS-3-K562,为探讨SOCS-3在造血发育中的作用奠定基础。方法:通过重组慢病毒系统感染人红白血病细胞K562,采用流式细胞分选术,根据绿色荧光蛋白表达情况,获得稳定高表达SOCS-3的K562细胞;利用实时荧光定量PCR和蛋白质印迹实验,比较分选获得的细胞与对照细胞的SOCS-3表达差异;利用半定量PCR检测SOCS-3表达升高对K562红系发育相关基因GATA-1、β-globin表达水平的影响。结果:构建了人SOCS-3慢病毒表达载体;与对照组相比,通过流式细胞分选获得的K562细胞的SOCS-3基因表达水平升高8.05倍,蛋白表达水平升高3倍;SOCS-3表达升高后,K562细胞的GATA-1、β-globin基因表达受到明显抑制。结论:SOCS-3在造血发育中有重要的调控作用,而对其表达进行改变将在规模化的造血细胞定向诱导研究中发挥重要作用。  相似文献   

6.
The effect of PIC-BE on the expression of mdr-1, bcl-2 and bax genes and their protein products (P-gp, Bcl-2 and Bax) was observed respectively in a multidrug resistance (MDR) cell variant K562/ADM. The results showed that PIC-BE could significantly inhibit the expression of mdr-1 and bcl-2 genes at both mRNA and protein levels in K562/ADM cell line, and the effect was dose- and time-dependent within limited range. Under same condition, although PIC-BE could increase the expression of Bax slightly, there was no statistically significant difference. These results suggest that the reversal of the MDR of K562/ADM cell line by PIC-BE may result from its effect on the expression of mdr-1, bcl-2 genes and their protein products.  相似文献   

7.
目的:探讨PESV对K562细胞BCR/ABL融合基因及凋亡调控因子bcl-2和bad表达的影响.方法:将体外培养K562细胞,经PESV处理不同时间后,流式细胞术检测细胞凋亡率,荧光定量RT-PCR检测BCR/ABL、Bcl-2、Bad mRNA水平变化.结果:与对照组相比,PESV处理后K562细胞,凋亡率增加,BCR/ABL融合基因表达降低,抗凋亡相关基因Bcl-2 mRNA表达降低,促凋亡基因Bad mRNA表达增加.结论:PESV能降低降低K562细胞BCR/ABL融合基因的表达,可能通过调节Bcl-2和Bad表达,抑制K562细胞增殖,促进其凋亡.  相似文献   

8.
本文以多药耐药(MDR)细胞株K_(562)/ADM作为实验模型,研究了β-榄香烯吗素(PIC-BE)对该细胞中mdr-1、bcl-2和bax基因及其编码蛋白(P-gp、Bcl-2和Bax)表达的影响。结果显示,PIC-BE可显著抑制K_(562)/ADM细胞中mdr-1、bcl-2及P-gp和Bcl-2的表达,并在一定的范围内呈现对浓度和时间的依赖性。相同条件下,PIC-BE对该细胞中Bax的表达虽有所促进,但统计学上无显著差异,提示PIC-BE对K_(562)/ADM细胞MDR的逆转作用可能是通过其直接或间接地影响到该细胞mdr-1、bcl-2及P-gp和Bcl-2的表达或功能而实现。  相似文献   

9.
Abstract. Nuclear DNA content was assessed in multidrug-resistant (MDR) cells by image and flow cytometry. Two human MDR cell lines (K562-Dox and CEM-VLB) obtained by in vitro drug selection and overexpressing mdr1 gene were compared to their respective sensitive counterparts (K562 and CCRF-CEM) and to the MDR hamster LR73-R cell line obtained by transfection of mouse mdr1 cDNA. Both cell lines obtained by selection displayed a decreased DNA content, as measured by image cytometry after Feulgen staining, or by flow cytometry after staining with propidium iodide, ethidium bromide, or Hoechst 33342. This decrease was not accompanied by changes in cell cycle phase distribution of cells. Moreover, image cytometry of cells stained after various hydrolysis times in 5 M HCl indicated that MDR cells displayed the same hydrolysis kinetics and sensitivity as drug-sensitive cells with a well-preserved stoichiometry of the Feulgen reaction. LR73-R cells transfected with mdr1 cDNA exhibited only a very limited change in propidium iodide staining as compared with sensitive LR73 cells, suggesting that mdr1 gene overexpression alone could not account for the alterations in DNA content observed in the selected MDR cells.  相似文献   

10.
目的:通过观察高迁移率族蛋白1(HMGB1)、转录因子NF-E2相关因子2(Nrf2)及血红素加氧酶1(HO-1)基因沉默对白血病化疗耐药细胞(K562/A02细胞株)的影响,探讨该信号通路在白血病化疗耐药中的作用及其可能机制。方法:将HMGB1基因、Nrf2基因及HO-1基因的特异性干扰RNA分别转染阿霉素耐药细胞株K562/A02,荧光实时定量(RT-PCR)方法检测HMGB1、Nrf2及HO-1的mRNA表达水平,Western blot方法检测HMGB1、Nrf2及HO-1的蛋白表达水平,免疫荧光方法检测Nrf2的蛋白表达,并使用CCK-8方法检测转染前后K562/A02细胞株的细胞活性。结果:HMGB1基因、Nrf2基因或HO-1基因沉默的K562/A02细胞活性皆显著低于对照组及空白组(P0.05),化疗敏感性恢复。结论:HMGB1高表达导致了白血病细胞株K562/A02对阿霉素的化疗耐药,Nrf2/HO-1信号通路参与了HMGB1诱导的K562/A02细胞的化疗耐药,其表达上调可恢复K562/A02细胞对阿霉素的敏感性。  相似文献   

11.
The pluripotential hematopoietic cell line K562 was studied as a model of inducible integrin expression accompanying differentiation. Differentiation along the megakaryocytic pathway was induced with phorbol 12,13-dibutyrate and differentiation along the erythroid pathway with hemin. Induction of megakaryocytic differentiation was associated with changes in cell morphology and with increased cell-cell and cell-substrate adhesion and spreading. Erythroid differentiation was not associated with changes in morphology or adhesion. Cell surface expression of the IIb-IIIa and alpha 2 beta 1 integrins increased markedly with phorbol treatment but decreased with hemin treatment. Phorbol-treated K562 cells, but not control cells or hemin-treated cells, adhered to collagen substrates in a Mg(2+)-dependent manner which was specifically inhibited by a monoclonal antibody directed against the alpha 2 beta 1 integrin. Northern blot analysis revealed that megakaryocytic differentiation of K562 cells was accompanied by de novo expression of the alpha 2 integrin mRNA with no change in the level of mRNA for the beta 1 subunit. K562 cells provide a model of differentiation-dependent, regulated integrin expression in which expression is up- or down-regulated depending upon the differentiation pathway selected.  相似文献   

12.
13.
Galectin 1 (GAL1) is a β-galactoside-binding lectin involvedin cell cycle progression. GAL1 overexpression is associatedwith neoplastic transformation and loss of differentiation.The gene encoding for human GAL1 resides on chromosome 22(ql2;ql3), and its expression is devel-opmentally regulated. Althoughdevoid of signal peptide GAL1 can be externalized from cellsby a mechanism independent of the normal secretory process.We report here on a study of the effects of erythroid differentiationof the human leukemia cell line K562 on GAL1 protein expression.In undifferentiated K562 cells, GAL1 was expressed into thecytosol. However, the amount of GAL1 was surprisingly weakerin K562 cells than in other leukemia cell lines such as TF-1or KGla. Treatment of K562 cells with erythropoietin (EPO) orwith aphidicolin (APH), an inhibitor for DNA polymerase , inducedan erythroid pheno-type and led to the externalization of cytosolicGAL1 which was then bound to ligands on cell surface in a galactoside-inhibitablefashion. Our results demonstrate that acquisition of an erythroidphenotype is associated with an exter-nalization of GALL Theautocrine binding of GAL1 to cell surface ligands of non adherentcells such as K562 suggest that GAL1 is implicated rather insignal transduction than in cell-cell or cell-matrix interaction.Moreover, the reciprocal translocation involving chromosomes9 and 221(9;22) present in K562 cells might explain the weakexpression of GAL1 in K562 leukemia cells. galectin-l K562 cells differentiation glycoconjugates  相似文献   

14.
The mdr gene, which encodes an energy-dependent multidrug efflux pump termed P-glycoprotein, is expressed in some normal human and rodent tissues, including the adrenal gland, kidney, liver, colon, small intestine, and brain and testis capillary endothelial cells. Because of the important role played by the multidrug transporter in determining sensitivity of normal tissues and resistance of cancers to chemotherapeutic drugs, we and others have been determining the environmental factors which regulate expression of the mdr gene. In previous studies, expression of the human MDR1 gene has been shown to be regulated by heat shock, arsenite, and cadmium in a kidney carcinoma cell line, and mdr RNA is dramatically elevated in rat liver after partial hepatectomy or treatment of the animals with cytotoxic agents. We have now investigated the genetic response of the mdr gene to acute cytotoxic insults in rodent and human tissue culture cells. Following exposure to several drugs, most of which are known to be substrates for the multidrug transporter, mdr RNA levels were found to increase substantially in the rodent cells, but not the human cells. Furthermore, RNA levels for topoisomerase II, an intracellular target for these drugs, decreased in the rodent cells. These results suggest a complex pattern of regulation of mdr RNA levels, depending on animal species and cell type, and possible coordinate regulation with topoisomerase II RNA levels.  相似文献   

15.
16.
17.
Kucukkaya B  Arslan DO  Kan B 《Life sciences》2006,78(11):1217-1224
Heterotrimeric G proteins which couple extracellular signals to intracellular effectors play a central role in cell growth and differentiation. The pluripotent erythroleukemic cell line K562 that acquires the capability to synthesize hemoglobin in response to a variety of agents can be used as a model system for erythroid differentiation. Using Western blot analysis and RT-PCR, we studied alterations in G protein expression accompanying hemin-induced differentiation of K562 cells. We demonstrated the presence of G(alpha s), G(alpha i2) and G(alpha q) and the absence of G(alpha i1), G(alpha o) and G(alpha 16) in K562 cells. We observed the short form of G(alpha s) to be expressed predominantly in these cells. Treatment of K562 cells with hemin resulted in an increase in the levels of G(alpha s) and G(alpha q). On the other hand, the level of G(alpha i2) was found to increase on the third day after induction with hemin, followed by a decrease to levels lower of those of uninduced cells. The mitogen-activated protein kinase ERK1/2 pathway is crucial in the control of cell proliferation and differentiation. Both Gi- and Gq-coupled receptors stimulate MAPK activation. We therefore examined the phosphorylation of ERK1/2 during hemin-induced differentiation of K562 cells. Using anti-ERK1/2 antibodies, we observed that ERK2 was primarily phosphorylated in K562 cells. ERK2 phosphorylation increased gradually until 48 h and returned to basal values by 96 h following hemin treatment. Our results suggest that changes in G protein expression and ERK2 activity are involved in hemin-induced differentiation of K562 cells.  相似文献   

18.
Topoisomerases catalyse the interconversion of topological isomers of DNA and have key roles in nucleic acid metabolism. Human cells express two distinct type II topoisomerase isozymes, designated topoisomerase II alpha (170 kDa form) and topoisomerase II beta (180 kDa form). We have isolated cDNA clones encoding the beta isozyme from a human B-cell library. The proposed coding region for the topoisomerase II beta protein is 4,863 nucleotides long and would encode a polypeptide with a calculated M(r) of 182,705. The predicted topoisomerase II beta protein sequence shows striking similarity (72% identical residues) to that of the human alpha isozyme, and homology to topoisomerase II proteins from Drosophila, yeast and bacteria. Regions of greatest amino acid sequence divergence lie at the extreme N-terminus and over a C-terminal domain comprising approximately 25% of the total protein. We have quantified the level of topoisomerase II beta mRNA in a panel of human tumour cell lines of different origin using an RNase protection assay, and compared the level to that of topoisomerase II alpha mRNA. Topoisomerase II beta mRNA was expressed in haemopoietic, epithelial and fibroblast cell lines, although to different extents, with U937 cells (promonocytic leukaemia) showing a particularly high level. There was no obvious relationship in terms of level of expression between the topoisomerase II alpha and beta genes. We have localised the gene encoding topoisomerase II beta protein to chromosome 3p24 in the human genome.  相似文献   

19.
Chan JY  Chu AC  Fung KP 《Life sciences》2000,67(17):2117-2124
The development of multiple drug resistance in tumor cells is a significant problem in cancer therapy. In human, one of the reasons causing the resistance is due to the overexpression of the mdr1 gene product, P-glycoprotein. In our study, we had developed multiple drug resistant HepG2 cell line (HepG2/DR). To reverse the resistance, HepG2-DR cells were treated with antisense RNA against mdr1 gene. Total RNA and protein were extracted from the transfected cells. Northern analysis showed that mRNA level of mdr1 was decreased whereas a reduction in P-glycoprotein was detected by Western blot. By using flow cytometry, the ability of intracellular doxorubicin retention increased and drug efflux decreased in the treated cells. The result also showed that the cellular sensitivity to doxorubicin, vincristine and methotrexate measured in IC50 increased 83.3% 84.6% and 50% respectively. All these findings suggested that the expression of p-glycoprotein was successfully inhibited by antisense RNA and the drug resistance was reduced.  相似文献   

20.
Fan YZ  Chang H  Yu Y  Liu J  Wang R 《Peptides》2006,27(9):2165-2173
Thymosin alpha1 (Talpha1), a 28-amino acid peptide, is a well-known immune system enhancer for the treatment of various diseases. In the present investigation, the effects of Talpha1 on the proliferation and apoptosis of human leukemia cell lines (HL-60, K562 and K562/ADM) were studied. The proliferation was significantly depressed after 96 h of treatment with Talpha1, and obvious signs of apoptosis, i.e., cell morphology, nuclei condensation and Annexin V binding, were observed thereafter. Moreover, the up-regulation of Fas/Apol (CD95) and decrease in bcl-2 anti-apoptotic gene expression were observed in apoptotic cells. The expression and the function of P-glycoprotein (P-gp) can be slightly inhibited by Talpha1. It is noteworthy that K562 and K562/ADM were more sensitive than HL-60 cells when subjected to Talpha1. Furthermore, HepG-2, the human hepatoma cell line, displayed significant less sensitivity to Talpha1 than all the human leukemia cell lines. D-Tubocurarine (TUB), a nicotinic acetylcholine receptors (nAChRs) antagonist, significantly antagonized the inhibition effects induced by Talpha1, whereas atropine, a muscarinic acetylcholine receptor antagonist, did not exhibit such effects. All the results indicate that Talpha1 was able to significantly suppress proliferation and induce apoptosis in human leukemia cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号