首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of chemical synapses requires exchange of organizing signals between the synaptic partners. Using synaptic vesicle aggregation in cultured neurons as a marker of presynaptic differentiation, we purified candidate presynaptic organizers from mouse brain. A major bioactive species was the extracellular domain of signal regulatory protein alpha (SIRP-alpha), a transmembrane immunoglobulin superfamily member concentrated at synapses. The extracellular domain of SIRP-alpha is cleaved and shed in a developmentally regulated manner. The presynaptic organizing activity of SIRP-alpha is mediated in part by CD47. SIRP-alpha homologues, SIRP-beta and -gamma also have synaptic vesicle clustering activity. The effects of SIRP-alpha are distinct from those of another presynaptic organizer, FGF22: the two proteins induced vesicle clusters of different sizes, differed in their ability to promote neurite branching, and acted through different receptors and signaling pathways. SIRP family proteins may act together with other organizing molecules to pattern synapses.  相似文献   

2.
We carried out an electron microscopy study of possible synaptic contacts of the neurons of intracortical transplants of the rat brain fascia dentata with targets in the recipient somatosensory cortex. The axons of fascia dentata granular cell and their synaptic terminals could be easily identified in the neocortex due to their distinct morphological features (mossy fibers), although the fascia dentate cells normally do not interact with the neocortex. Thin nonmyelenized mossy fibers were found in both an intermediate zone between the transplant and brain and in the adjacent brain. Their presynaptic buds, like in situ, had large size and formed characteristic terminal, intraterminal, and en passant multiple synaptic contacts and desmosome-like junctions. The aberrant nerve fibers used perykaryons, dendrites of varying diameter, and dendrite spikes of the somatosensory cortex pyramidal neurons as postsynaptic targets in the neocortex. In addition to vacant spaces that appeared in the brain as a result of transplantation, the ingrowing axons induced the formation of additional contact sites: deep invaginations of the plasmalemma of perykaryons, somatic spikes, terminal branchings of dendrites, and dendritic outgrowths of complex branched shape. These aberrant contacts were characterized by the presence of polyribosomes, endoplasmic reticulum cisternae, and mitochondria in the postsynaptic loci. Osmiophility and extension of desmosome-like junctions were also enhanced in such synapses. Thus, it was shown that mossy fibers ingrowing in the recipient neocortex were capable of forming cell-to-cell contacts with signs of functional synapses to atypical cell targets.  相似文献   

3.
Zhuravleva ZH 《Ontogenez》2002,33(3):230-235
We carried out an electron microscopy study of possible synaptic contacts of the neurons of intracortical transplants of the rat brain fascia dentata with targets in the recipient somatosensory cortex. The axons of fascia dentata granular cell and their synaptic terminals could be easily identified in the neocortex due to their distinct morphological features (mossy fibers), although the fascia dentate cells normally do not interact with the neocortex. Thin nonmyelenized mossy fibers were found in both an intermediate zone between the transplant and brain and in the adjacent brain. Their presynaptic buds, like in situ, had large size and formed characteristic terminal, intraterminal, and en passant multiple synaptic contacts and desmosome-like junctions. The aberrant nerve fibers used perykaryons, dendrites of varying diameter, and dendrite spikes of the somatosensory cortex pyramidal neurons as postsynaptic targets in the neocortex. In addition to vacant spaces that appeared in the brain as a result of transplantation, the ingrowing axons induced the formation of additional contact sites: deep invaginations of the plasmalemma of perykaryons, somatic spikes, terminal branchings of dendrites, and dendritic outgrowths of complex branched shape. These aberrant contacts were characterized by the presence of polyribosomes, endoplasmic reticulum cisternae, and mitochondria in the postsynaptic loci. Osmiophility and extension of desmosome-like junctions were also enhanced in such synapses. Thus, it was shown that mossy fibers ingrowing in the recipient neocortex were capable of forming cell-to-cell contacts with signs of functional synapses to atypical cell targets.  相似文献   

4.
The cellular distribution and intracellular localization of neuron-specific enolase (NSE) has been studied by electron microscopic immunocytochemistry in the brain of the rat and of the mouse. Although the intensity of staining was less in the mouse, the same structures were positive in both species. In the cerebrum, the neuronal perikarya and dendrites were intensely stained, but staining was almost entirely absent in the presynaptic terminals. The deep neurons of the brain stem were also positive. In the cerebellum, perikarya, axons, and parallel fibers of the granule cell neurons were stained as were the synaptic vesicles and presynaptic membranes of the synapses between the parallel fibers and the Purkinje cell dendrites. Golgi cell dendrites, basket cells and their axons, and mossy fibers were also positive. In contrast, the Purkinje cells including their dendrites, and the climbing fibers that formed synapses with the Purkinje cell dendrites were not stained. The majority of the myelinated axons in both the cerebrum and the cerebellum did not stain, but the fibrillary astrocytic processes between myelinated axons in the white matter did. Oligodendroglia, protoplasmic astrocytes, Bergmann glia, astrocytes investing capillaries, and vascular endothelial cells were negative for reaction product. In the positively staining cells and their processes, the positivity was dispersed throughout the cytoplasm and corresponded most closely to the distribution of ribosomes, the granular endoplasmic reticulum, and microtubules. Nuclei, mitochondria, the cisternae of the Golgi complex, myelin lamellae, and most membranes were not stained.  相似文献   

5.
Proper dialogue between presynaptic neurons and their targets is essential for correct synaptic assembly and function. At central synapses, Wnt proteins function as retrograde signals to regulate axon remodeling and the accumulation of presynaptic proteins. Loss of Wnt7a function leads to defects in the localization of presynaptic markers and in the morphology of the presynaptic axons. We show that loss of function of Dishevelled-1 (Dvl1) mimics and enhances the Wnt7a phenotype in the cerebellum. Although active zones appear normal, electrophysiological recordings in cerebellar slices from Wnt7a/Dvl1 double mutant mice reveal a defect in neurotransmitter release at mossy fiber-granule cell synapses. Deficiency in Dvl1 decreases, whereas exposure to Wnt increases, synaptic vesicle recycling in mossy fibers. Dvl increases the number of Bassoon clusters, and like other components of the Wnt pathway, it localizes to synaptic sites. These findings demonstrate that Wnts signal across the synapse on Dvl-expressing presynaptic terminals to regulate synaptic assembly and suggest a potential novel function for Wnts in neurotransmitter release.  相似文献   

6.
7.
The axon terminals of the acoustic nerve contact different part of the cochlear nucleus including granule cell areas. Little is known of the cell composition and neural circuits of granule cell areas present in the fusiform and upper polymorphic layers of the dorsal cochlear nucleus in the guinea pig. The present ultrastructural immunocytochemical study exploits the technique of post-embedding immunogold and silver intensification to reveal the characteristics of small neurons in granule cell areas. Few neurons (Golgi-stellate cells) use glycine as inhibitory neurotransmitter which is present in symmetric synaptic boutons with pleomorphic and flat vesicles. In contrast, most neurons (granule and unipolar brush cells) are not glycine-positive, and presumably not excitatory. Most of the large axons (mossy fibres) in granule areas are probably excitatory (glycine-negative and storing round synaptic vesicles) and contact unipolar brush cells forming large synapses or granule cell dendrites by small synapses. A few large glycinergic boutons (inhibitory) also contact unipolar brush cells. The excitatory circuit of mossy fibre-unipolar brush and granule cells may be inhibited by the glycinergic terminals from the few glycinergic cells (Golgi-stellate neurons) present within the granule cell areas. The latter are not contacted by large mossy-like glycine terminals.  相似文献   

8.
The remodeling of axonal circuits after injury requires the formation of new synaptic contacts to enable functional recovery. Which molecular signals initiate such axonal and synaptic reorganisation in the adult central nervous system is currently unknown. Here, we identify FGF22 as a key regulator of circuit remodeling in the injured spinal cord. We show that FGF22 is produced by spinal relay neurons, while its main receptors FGFR1 and FGFR2 are expressed by cortical projection neurons. FGF22 deficiency or the targeted deletion of FGFR1 and FGFR2 in the hindlimb motor cortex limits the formation of new synapses between corticospinal collaterals and relay neurons, delays their molecular maturation, and impedes functional recovery in a mouse model of spinal cord injury. These results establish FGF22 as a synaptogenic mediator in the adult nervous system and a crucial regulator of synapse formation and maturation during post‐injury remodeling in the spinal cord.  相似文献   

9.
In addition to (i) mossy terminals, (ii) Golgi axons, (iii) granule cell dendrites and (iv), occasionally, Golgi cell dendrites, a third axonal profile identified by morphological criteria as the collateral of Purkinje axons, has been found in 2% of all cerebellar glomeruli. These infrequent components of a few glomeruli, however, were never seen in normal cerebellar cortex to establish specialized synaptic contact with glomerular dendrites. Two to four weeks after surgical isolation of the cerebellar cortex, i.e. following the destruction of both efferent and afferent fibres, the number of glomeruli containing (hypertrophic) axonal branches of Purkinje cells has increased to 13% of all surveyed glomeruli. In addition, the Purkinje axon terminals in the mossy fibre-deprived glomeruli were observed to establish numerous Gray II-type synaptic contacts with surrounding granule cell dendrites. It is suggested that the development of heterologous synapses between hypertrophic, or even intact, Purkinje axon collaterals on the one hand and the mossy fibre-vacated granule cell dendrites on the other, is a compensatory, reactive process to the synaptic "desaturation" of granule neurons, which demonstrate a dormant potential of Purkinje cells to form new synaptic contacts in the adult cerebellum.  相似文献   

10.
Hall AC  Lucas FR  Salinas PC 《Cell》2000,100(5):525-535
Synapse formation requires changes in cell morphology and the upregulation and localization of synaptic proteins. In the cerebellum, mossy fibers undergo extensive remodeling as they contact several granule cells and form complex, multisynaptic glomerular rosettes. Here we show that granule cells secrete factors that induce axon and growth cone remodeling in mossy fibers. This effect is blocked by the WNT antagonist, sFRP-1, and mimicked by WNT-7a, which is expressed by granule cells. WNT-7a also induces synapsin I clustering at remodeled areas of mossy fibers, a preliminary step in synaptogenesis. Wnt-7a mutant mice show a delay in the morphological maturation of glomerular rosettes and in the accumulation of synapsin I. We propose that WNT-7a can function as a synaptogenic factor.  相似文献   

11.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the "trisynaptic circuit" in the adult rodent hippocampus, which display different types of long-term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin-R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin-R were localized by pre-embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre- or postsynaptically. Also, the extracellular matrix molecule tenascin-R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon-astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane-bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity.  相似文献   

12.
Although GABA(A) receptors are widely distributed at inhibitory synapses on dendrites and cell bodies of neurons, they also occur in other places, in particular at synapses made on axons and in extrasynaptic membranes. This review summarises some of the evidence that presynaptic receptors modulate transmission not only at primary afferents in the spinal cord, but also at a variety of sites in the brain, including hippocampal mossy fibres. These receptors modulate transmitter release via several different mechanisms. Another form of unconventional GABA(A) receptor-mediated signalling is the mediation of a tonic conductance, seen in granule cells of the cerebellum and dentate gyrus and also in hippocampal interneurons. Tonic signalling appears to be mediated by extrasynaptic receptors. The adaptive significance of this form of signalling remains poorly understood.  相似文献   

13.
A thorough evaluation of hippocampal dendrites, axons and synaptic contacts has not been undertaken following prolonged periods of absence of corticosteroids despite the marked granule cell loss which occurs in the dentate gyrus of adrenalectomized rats. Thus, we have applied morphometric techniques to analyse the dendrites of granule and pyramidal cells, the mossy fiber system, and the number and morphology of synapses between the mossy fibers and the excrescences of CA3 pyramidal cells in rats submitted to different periods of adrenalectomy. In addition, to search for the presence of neuritic reorganisation in the hippocampal formation once normal corticosteroid levels were re-established, we incorporated in this study a group of rats replaced with corticosterone one month after adrenalectomy. The results obtained in adrenalectomized rats showed a striking impoverishment of the dendrites of surviving granule cells, subtle alterations in the apical dendritic arborization of CA3 pyramidal cells and no changes in the apical dendrites of CA1 pyramidal cells. In addition, in adrenalectomized rats there was a progressive reduction in the total number of synapses established between mossy fibers and CA3 pyramids, as a consequence of a reduction in the volume of the suprapyramidal part of the mossy fiber system, and profound changes in the morphology of mossy fiber terminals and CA3 dendritic excrescences. A remarkable reorganisation of neurites was found to occur following the administration of low doses of corticosterone, completely reversing the adrenalectomy-induced synaptic loss and partially restoring the morphology of hippocampal axons and dendrites. These plastic mechanisms provide a sound structural basis for the reversibility of cognitive deficits observed after corticosterone administration to adrenalectomized rats.  相似文献   

14.
The dentate fascia of the hippocampal formation isolated from 20-day-old Wistar rat fetuses was subjected to heterotopic transplantation into the somatosensory area of the neocortex of adult rats of the same strain. Five months after surgery, neurotransplantates, together with neighboring area of the neocortex, were studied using light and electron microscopy. We carried out a detailed study of the ultrastructure of the ectopic synaptic endings formed by the axons of granular neurons of the dentate fascia (mossy fibers) with neurons of the neocortex unusual for them in a normal state. Ultrastructural analysis revealed that most ectopic synaptic endings produce its determinant morphological features: giant sizes of presynaptic knobs, active zones with branched dendritic spines, and adherens junctions with the surface of dendrites. The data indicate that the mossy fibers growing from neurotransplantates induce structural and chemical reorganization of dendrites of the neocortex using transmembrane adherens junctions, such as puncta adherentia junctions. This results in the differentiation of active zones and development of dendritic spines typical for giant synaptic endings that are invaginated into presynaptic endings. Thus, the ability of neurons of the dentate fascia to form aberrant synaptic connections at transplantation results from the inductive synaptogenic properties of mossy fibers.  相似文献   

15.
Synapses form after growing axons recognize their appropriate targets. The subsequent assembly of aligned pre and postsynaptic specializations is critical for synaptic function. This highly precise apposition of presynaptic elements (i.e. active zones) to postsynaptic specializations (i.e. neurotransmitter receptor clusters) strongly suggests that communication between the axon and target is required for synaptic differentiation. What trans‐synaptic factors drive such differentiation at vertebrate synapses? First insights into the answers to this question came from studies at the neuromuscular junction (NMJ), where axon‐derived agrin and muscle‐derived laminin β2 induce post and presynaptic differentiation, respectively. Recent work has suggested that axon‐ and target‐derived factors similarly drive synaptic differentiation at central synapses. Specifically, WNT‐7a, neuroligin, synaptic cell adhesion molecule (SynCAM) and fibroblast growth factor‐22 (FGF‐22) have all been identified as target‐derived presynaptic organizers, whereas axon‐derived neuronal activity regulated pentraxin (Narp), ephrinB and neurexin reciprocally co‐ordinate postsynaptic differentiation. In addition to these axon‐ and target‐derived inducers of synaptic differentiation, factors released from glial cells have also been implicated in regulating synapse assembly. Together, these recent findings have profoundly advanced our understanding of how precise appositions are established during vertebrate nervous system development.  相似文献   

16.
Much of what is currently known about the behavior of synapses in vivo has been learned at the mammalian neuromuscular junction, because it is large and accessible and also its postsynaptic acetylcholine receptors (AChRs) are readily labeled with a specific, high-affinity probe, alpha-bungarotoxin (BTX). Neuron-neuron synapses have thus far been much less accessible. We therefore developed techniques for imaging interneuronal synapses in an accessible ganglion in the peripheral nervous system. In the submandibular ganglion, individual preganglionic axons establish large numbers of axo-somatic synapses with postganglionic neurons. To visualize these sites of synaptic contact, presynaptic axons were imaged by using transgenic mice that express fluorescent protein in preganglionic neurons. The postsynaptic sites were visualized by labeling the acetylcholine receptor (AChR) alpha7 subunit with fluorescently tagged BTX. We developed in vivo methods to acquire three-dimensional image stacks of the axons and postsynaptic sites and then follow them over time. The submandibular ganglion is an ideal site to study the formation, elimination, and maintenance of synaptic connections between neurons in vivo.  相似文献   

17.
W G Regehr  D W Tank 《Neuron》1991,7(3):451-459
We have examined the role of presynaptic residual calcium in maintaining long-term changes in synaptic efficacy observed at mossy fiber synapses between hippocampal dentate granule cells and CA3 pyramidal cells. Calcium concentrations in individual mossy fiber terminals in hippocampal slice were optically measured with the calcium indicator fura-2 while stimulating the mossy fiber pathway and recording excitatory postsynaptic potentials extracellularly. Short-term synaptic enhancement was accompanied by increased presynaptic residual calcium concentration. A 2-fold enhancement of transmitter release was accompanied by a 10-30 nM increase in residual calcium. Following induction of mossy fiber LTP, transiently elevated presynaptic calcium decayed to prestimulus levels, whereas enhancement of synaptic transmission persisted. Our results demonstrate that, despite an apparent strong sensitivity of synaptic enhancement to presynaptic residual calcium levels, sustained increases in presynaptic residual calcium levels are not responsible for the maintained synaptic enhancement observed during mossy fiber LTP.  相似文献   

18.
We have investigated the possibility that morphologically different excitatory glutamatergic synapses of the “trisynaptic circuit” in the adult rodent hippocampus, which display different types of long‐term potentiation (LTP), may express the immunoglobulin superfamily recognition molecules L1 and NCAM, the extracellular matrix molecule tenascin‐R, and the extracellular matrix receptor constituent beta1 integrin in a differential manner. The neural cell adhesion molecules L1, NCAM (all three major isoforms), NCAM180 (the largest major isoform with the longest cytoplasmic domain), beta1 integrin, polysialic acid (PSA) associated with NCAM, and tenascin‐R were localized by pre‐embedding immunostaining procedures in the CA3/CA4 region (mossy fiber synapses) and in the dentate gyrus (spine synapses) of the adult rat hippocampus. Synaptic membranes of mossy fiber synapses where LTP is expressed presynaptically did not show detectable levels of immunoreactivity for any of the molecules/epitopes studied. L1, NCAM, and PSA, but not NCAM180 or beta1 integrin, were detectable on axonal membranes of fasciculating mossy fibers. In contrast to mossy fiber synapses, spine synapses in the outer third of the molecular layer of the dentate gyrus, which display postsynaptic expression mechanisms of LTP, were both immunopositive and immunonegative for NCAM, NCAM180, beta1 integrin, and PSA. Those spine synapses postsynaptically immunoreactive for NCAM or PSA also showed immunoreactivity on their presynaptic membranes. NCAM180 was not detectable presynaptically in spine synapses. L1 could not be found in spine synapses either pre‐ or postsynaptically. Also, the extracellular matrix molecule tenascin‐R was not detectable in synaptic clefts of all synapses tested, but was amply present between fasciculating axons, axon‐astrocyte contact areas, and astrocytic gap junctions. Differences in expression of the membrane‐bound adhesion molecules at both types of synapses may reflect the different mechanisms for induction and/or maintenance of synaptic plasticity. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 142–158, 2001  相似文献   

19.

Background

Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons.

Methods and Findings

In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP) in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs). In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC) layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs.

Conclusions

The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits.  相似文献   

20.
Walker MC  Ruiz A  Kullmann DM 《Neuron》2001,29(3):703-715
Mossy fibers are the sole excitatory projection from dentate gyrus granule cells to the hippocampus, where they release glutamate, dynorphin, and zinc. In addition, mossy fiber terminals show intense immunoreactivity for the inhibitory neurotransmitter GABA. Fast inhibitory transmission at mossy fiber synapses, however, has not previously been reported. Here, we show that electrical or chemical stimuli that recruit dentate granule cells elicit monosynaptic GABA(A) receptor-mediated synaptic signals in CA3 pyramidal neurons. These inhibitory signals satisfy the criteria that distinguish mossy fiber-CA3 synapses: high sensitivity to metabotropic glutamate receptor agonists, facilitation during repetitive stimulation, and NMDA receptor-independent long-term potentiation. GABAergic transmission from the dentate gyrus to CA3 has major implications not only for information flow into the hippocampus but also for developmental and pathological processes involving the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号