共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli elongation factor G blocks stringent factor 总被引:3,自引:0,他引:3
The relationship between the binding domains of elongation factor G(EF-G) and stringent factor (SF) on ribosomes was studied. The binding of highly purified, radioactively labeled, protein factors to ribosomes was monitored with a column system. The data show that binding of EF-G to ribosomes in the presence of fusidic acid and GDP or of the noncleavable analogue GDPCP prevents subsequent binding of SF to ribosomes. In addition, stabilization of the EF-G-ribosome complex by fusidic acid inhibits SF's enzymatic activities. Removal of protein L7/L12 from ribosomes leads to weaker binding of EF-G, while SF's binding and activity are unaffected. In the absence of L7/L12, EF-G-dependent inhibition of SF binding and function is reduced. The data presented in this report suggest that these two factors bind at overlapping, or at least interacting, ribosomal domains. 相似文献
2.
The stringent factor extracted from several independently isolated rel- mutants is more thermolabile than the stringent factor extracted from the parental rel+ strain. This thermolability is characteristically different in each of the mutants. This strongly suggests that the stringent factor is the product of the rel gene. 相似文献
3.
Charbon G Riber L Cohen M Skovgaard O Fujimitsu K Katayama T Løbner-Olesen A 《Molecular microbiology》2011,79(4):914-928
Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaA(ATP) level. Eight spontaneous hda suppressor mutations were identified by whole-genome sequencing, and three of these were analysed further. Two mutations (hsm-2 and hsm-4) mapped in the dnaA gene and led to a reduced ability to initiate replication from oriC. One mutation (hsm-1) mapped to the seqA promoter and increased the SeqA protein level in the cell. hsm-1 cells had prolonged origin sequestration, reduced DnaA protein level and reduced DnaA-Reactivating Sequence (DARS)-mediated rejuvenation of DnaA(ADP) to DnaA(ATP) , all of which could contribute to the suppression of RIDA deficiency. Despite of these defects hsm-1 cells were quite similar to wild type with respect to cell cycle parameters. We speculate that since SeqA binding sites might overlap with DnaA binding sites spread throughout the chromosome, excess SeqA could interfere with DnaA titration and thereby increase free DnaA level. Thus, in spite of reduction in total DnaA, the amount of DnaA molecules available for initiation may not be reduced. 相似文献
4.
The rate of cleavage of GTP on the binding of Phe-tRNA.elongation factor Tu.GTP to poly(U)-programmed ribosomes of Escherichia coli 总被引:3,自引:0,他引:3
Interaction of Phe-tRNA.elongation factor Tu.GTP with poly(U)-programmed ribosomes containing an occupied P site can be described by a three-step kinetic mechanism. Initial binding is followed by the cleavage of GTP, and then a new peptide bond is formed. Rate constants controlling the first and third of these reactions are known, but only a lower limit for the rate constant of the cleavage step has been reported. We have determined this rate constant to be 20 s-1 at 5 degrees C, 30 s-1 at 15 degrees C, and 50 s-1 at 25 degrees C. This is much faster than the reverse step of the initial binding process and implies that the intrinsic accuracy of the ribosome in the initial selection step is sacrificed in favor of speed. The similarity of the kinetic and chemical mechanism of this GTP cleavage step with other nucleoside 5'-triphosphatases is discussed. 相似文献
5.
6.
Activation of ATP:GTP 3'-pyrophosphotransferase (guanosine pentaphosphate synthetase) in Streptomyces antibioticus. 下载免费PDF全文
G H Jones 《Journal of bacteriology》1994,176(5):1482-1487
The activity of the ATP:GTP 3'-pyrophosphotransferase (guanosine pentaphosphate synthetase I [GPSI]) from Streptomyces antibioticus is stimulated maximally by methanol at 20% (vol/vol) in assay mixtures. Although the enzyme is not activated by ribosomes, its activity is stimulated by tRNA (uncharged or charged) and by synthetic mRNA [e.g., poly(U)]. The level of stimulation is greater in the presence of tRNA and poly(U) together than with either RNA alone. Incubation of GPSI with low levels of trypsin also leads to activation of the enzyme. Analysis of the products of mild trypsin digestion revealed the presence of two intermediates whose M(r)s are identical to those of species produced by incubation of purified GPSI with crude extracts of S. antibioticus mycelium. GPSI can be activated by incubation with crude mycelial extracts, and this activation is partially inhibited by the inclusion of trypsin inhibitor in reaction mixtures. 相似文献
7.
Deckers-Hebestreit G Greie J Stalz W Altendorf K 《Biochimica et biophysica acta》2000,1458(2-3):364-373
In this review we discuss recent work from our laboratory concerning the structure and/or function of the F(0) subunits of the proton-translocating ATP synthase of Escherichia coli. For the topology of subunit a a brief discussion gives (i) a detailed picture of the C-terminal two-thirds of the protein with four transmembrane helices and the C terminus exposed to the cytoplasm and (ii) an evaluation of the controversial results obtained for the localization of the N-terminal region of subunit a including its consequences on the number of transmembrane helices. The structure of membrane-bound subunit b has been determined by circular dichroism spectroscopy to be at least 75% alpha-helical. For this purpose a method was developed, which allows the determination of the structure composition of membrane proteins in proteoliposomes. Subunit b was purified to homogeneity by preparative SDS gel electrophoresis, precipitated with acetone, and redissolved in cholate-containing buffer, thereby retaining its native conformation as shown by functional coreconstitution with an ac subcomplex. Monoclonal antibodies, which have their epitopes located within the hydrophilic loop region of subunit c, and the F(1) part are bound simultaneously to the F(0) complex without an effect on the function of F(0), indicating that not all c subunits are involved in F(1) interaction. Consequences on the coupling mechanism between ATP synthesis/hydrolysis and proton translocation are discussed. 相似文献
8.
9.
Stringent factor is a ribosome-dependent ATP:GTP pyrophosphoryl transferase that synthesizes (p)ppGpp upon nutrient deprivation. It is activated by unacylated tRNA in the ribosomal amino-acyl site (A-site) but it is unclear how activation occurs. A His-tagged stringent factor was isolated by affinity-chromatography and precipitation. This procedure yielded a protein of high purity that displayed (a) a low endogenous pyrophosphoryl transferase activity that was inhibited by the antibiotic tetracycline; (b) a low ribosome-dependent activity that was inhibited by the A-site specific antibiotics thiostrepton, micrococcin, tetracycline and viomycin; (c) a tRNA- and ribosome-dependent activity amounting to 4500 pmol pppGpp per pmol stringent factor per minute. Footprinting analysis showed that stringent factor interacted with ribosomes that contained tRNAs bound in classical states. Maximal activity was seen when the ribosomal A-site was presaturated with unacylated tRNA. Less tRNA was required to reach maximal activity when stringent factor and unacylated tRNA were added simultaneously to ribosomes, suggesting that stringent factor formed a complex with tRNA in solution that had higher affinity for the ribosomal A-site. However, tRNA-saturation curves, performed at two different ribosome/stringent factor ratios and filter-binding assays, did not support this hypothesis. 相似文献
10.
11.
12.
Summary When supplemented with Escherichia coli stringgent factor, 80S ribosomes from various sources failed to support guanosine tetra- and pentaphosphate ((p)ppGpp) synthesis. In contrast, ribosomal proteins from 80S, 60S or 40S particles (mouse embryos, rabbit reticulocytes) crossreacted with the E. coli stringent factor. Significant stimulation of (p)ppGpp synthesis was achieved proteins/ml. These observations may provide additional criteria to detect homologies between eukaryotic and prokaryotic ribosomal proteins. 相似文献
13.
H Schmale K Farnung S Fehr D Richter 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1977,358(12):1613-1622
15.
The effect of alcohols on guanosine 5'-diphosphate-3'-diphosphate metabolism in stringent and relaxed Escherichia coli 总被引:3,自引:0,他引:3
The effects of a series of alcohols on the stringent response system of Escherichia coli were studied. The alcohols used could be divided into two groups on the basis of the response of pppGpp and ppGpp to the growth downshift induced by the alcohols. The cells responded to the alcohols, methanol, ethanol, and propanol, as if they were being starved of amino acids. In the stringent strain CP78 these alcohols induced pppGpp and ppGpp accumulation and curtailed RNA synthesis, whereas in the relaxed strain CP79, both of these responses were absent. It was determined that this response was most likely due to an interference by these alcohols with the uptake of amino acids required by these strains. By contrast both stringent and relaxed cells elevated their level of ppGpp and decreased RNA accumulation when treated with butanol or pentanol. This response is similar to the effect of carbon source limitation. It was determined that the elevation of ppGpp in the stringent strain was primarily the result of increased ppGpp synthesis in response to these alcohols. In the relaxed strain the rise in ppGpp was dependent on a decrease in ppGpp degradation coupled with a moderate increase in ppGpp synthesis. This stimulation of ppGpp synthesis in relaxed cells, although small, suggests the existence of an enzyme distinct from stringent factor which is capable of synthesizing ppGpp. Data are presented which suggest that the activity of this enzyme is coupled to the potential for protein synthesis and energy availability of the cell, perhaps being regulated by the overall ratio of unchanged to amino-acylated tRNA. 相似文献
16.
Mammalian mitochondrial ribosomes are distinguished from their bacterial and eukaryotic-cytoplasmic counterparts, as well as from mitochondrial ribosomes of lower eukaryotes, by their physical and chemical properties and their high protein content. However, they do share more functional homologies with bacterial ribosomes than with cytoplasmic ribosomes. To search for possible homologies between mammalian mitochondrial ribosomes and bacterial ribosomes at the level of initiation factor binding sites, we studied the interaction of Escherichia coli initiation factor 3 (IF3) with bovine mitochondrial ribosomes. Bacterial IF3 was found to bind to the small subunit of bovine mitochondrial ribosomes with an affinity of the same order of magnitude as that for bacterial ribosomes, suggesting that most of the functional groups contributing to the IF3 binding site in bacterial ribosomes are conserved in mitochondrial ribosomes. Increasing ionic strength affects binding to both ribosomes similarly and suggests a large electrostatic contribution to the reaction. Furthermore, bacterial IF3 inhibits the Mg2+-dependent association of mitochondrial ribosomal subunits, suggesting that the bacterial IF3 binds to mitochondrial small subunits in a functional way. 相似文献
17.
18.
Luria-Bertani broth supports Escherichia coli growth to an optical density at 600 nm (OD600) of 7. Surprisingly, however, steady-state growth ceases at an OD600 of 0.3, when the growth rate slows down and cell mass decreases. Growth stops for lack of a utilizable carbon source. The carbon sources for E. coli in Luria-Bertani broth are catabolizable amino acids, not sugars. 相似文献
19.
20.
Stanley D. Dunn Matthew Revington Daniel J. Cipriano Brian H. Shilton 《Journal of bioenergetics and biomembranes》2000,32(4):347-355
The b subunit of ATP synthase is a major component of the second stalk connecting the F1and F0 sectors of the enzyme and is essential for normal assembly and function. The156-residue b subunit of the Escherichia coli ATP synthase has been investigated extensivelythrough mutagenesis, deletion analysis, and biophysical characterization. The two copies ofb exist as a highly extended, helical dimer extending from the membrane to near the top ofF1, where they interact with the subunit. The sequence has been divided into four domains:the N-terminal membrane-spanning domain, the tether domain, the dimerization domain, andthe C-terminal -binding domain. The dimerization domain, contained within residues 60–122,has many properties of a coiled-coil, while the -binding domain is more globular. Sites ofcrosslinking between b and the a, , , and subunits of ATP synthase have been identified,and the functional significance of these interactions is under investigation. The b dimer mayserve as an elastic element during rotational catalysis in the enzyme, but also directly influencesthe catalytic sites, suggesting a more active role in coupling. 相似文献