首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Clp ATPases define a novel class of molecular chaperones   总被引:14,自引:3,他引:11  
The Clp ATPases were originally identified as a regulatory component of the bacterial ATP-dependent Clp serine proteases. Proteins homologous to the Escherichia coli Clp ATPases (ClpA, B, X or Y) have been identified in every organism examined so far. Recent data suggest that the Clp ATPases are not only specificity factors which help to 'present' various protein substrates to the ClpP or other catalytic proteases, but are also molecular chaperones which can function independently of ClpP. This review discusses the recent evidence that the Clp ATPases are indeed molecular chaperones capable of either repairing proteins damaged during stress conditions or activating the initiation proteins for Mu, λ or P1 DNA replication. A mechanism is suggested to explain how the Clp ATPases 'decide' whether to repair or destroy their protein substrates.  相似文献   

2.
The Clp/Hsp100 ATPases are hexameric protein machines that catalyze the unfolding, disassembly and disaggregation of specific protein substrates in bacteria, plants and animals. Many family members also interact with peptidases to form ATP-dependent proteases. In Escherichia coli, for instance, the ClpXP protease is assembled from the ClpX ATPase and the ClpP peptidase. Here, we have used multiple sequence alignments to identify a tripeptide 'IGF' in E. coli ClpX that is essential for ClpP recognition. Mutations in this IGF sequence, which appears to be part of a surface loop, disrupt ClpXP complex formation and prevent protease function but have no effect on other ClpX activities. Homologous tripeptides are found only in a subset of Clp/Hsp100 ATPases and are a good predictor of family members that have a ClpP partner. Mapping of the IGF loop onto a homolog of known structure suggests a model for ClpX-ClpP docking.  相似文献   

3.
Multiprotein complexes in the cell are dynamic entities that are constantly undergoing changes in subunit composition and conformation to carry out their functions. The protein-DNA complex that promotes recombination of the bacteriophage Mu is a prime example of a complex that must undergo specific changes to carry out its function. The Clp/Hsp100 family of AAA+ ATPases plays a critical role in mediating such changes. The Clp/Hsp100 unfolding enzymes have been extensively studied for the roles they play in protein degradation. However, degradation is not the only fate for proteins that come in contact with the ATP-dependent unfolding enzymes. The Clp/Hsp100 enzymes induce structural changes in their substrates. These structural changes, which we refer to as "remodeling", ultimately change the biological activity of the substrate. These biological changes include activation, inactivation (not associated with degradation), and relocation within the cell. Analysis of the interaction between Escherichia coli ClpX unfoldase and the Mu recombination complex, has provided molecular insight into the mechanisms of protein remodeling. We discuss the key mechanistic features of the remodeling reactions promoted by ClpX and possible implications of these findings for other biological reactions.  相似文献   

4.
Clp ATPases are unique chaperones that promote protein unfolding and subsequent degradation by proteases. The mechanism by which this occurs is poorly understood. Here we demonstrate that the N-terminal domain of ClpX is a C4-type zinc binding domain (ZBD) involved in substrate recognition. ZBD forms a very stable dimer that is essential for promoting the degradation of some typical ClpXP substrates such as lambdaO and MuA but not GFP-SsrA. Furthermore, experiments indicate that ZBD contains a primary binding site for the lambdaO substrate and for the cofactor SspB. Removal of ZBD from the ClpX sequence renders the ATPase activity of ClpX largely insensitive to the presence of ClpP, substrates, or the SspB cofactor. All these results indicate that ZBD plays an important role in the ClpX mechanism of function and that ATP binding and/or hydrolysis drives a conformational change in ClpX involving ZBD.  相似文献   

5.
Clp/Hsp100 chaperones work with other cellular chaperones and proteases to control the quality and amounts of many intracellular proteins. They employ an ATP-dependent protein unfoldase activity to solubilize protein aggregates or to target specific classes of proteins for degradation. The structural complexity of Clp/Hsp100 proteins combined with the complexity of the interactions with their macromolecular substrates presents a considerable challenge to understanding the mechanisms by which they recognize and unfold substrates and deliver them to downstream enzymes. Fortunately, high-resolution structural data is now available for several of the chaperones and their functional partners, which together with mutational data on the chaperones and their substrates has provided a glimmer of light at the end of the Clp/Hsp100 tunnel.  相似文献   

6.
《Biophysical journal》2022,121(20):3907-3916
ATPases associated with diverse cellular activities (AAA+) proteases power the maintenance of protein homeostasis by coupling ATP hydrolysis to mechanical protein unfolding, translocation, and ultimately degradation. Although ATPase activity drives a large portion of the mechanical work these molecular machines perform, how the peptidase contributes to the forceful denaturation and processive threading of substrates remains unknown. Here, using single-molecule optical trapping, we examine the mechanical activity of the caseinolytic peptidase P (ClpP) from Escherichia coli in the absence of a partner ATPase and in the presence of an activating small-molecule acyldepsipeptide. We demonstrate that ClpP grips protein substrate under mechanical loads exceeding 40 pN, which are greater than those observed for the AAA+ unfoldase ClpX and the AAA+ protease complexes ClpXP and ClpAP. We further characterize substrate-ClpP bond lifetimes and rupture forces under varying loads. We find that the resulting slip bond behavior does not depend on ClpP peptidase activity. In addition, we find that unloaded bond lifetimes between ClpP and protein substrate are on a timescale relevant to unfolding times (up to ~160 s) for difficult to unfold model substrate proteins. These direct measurements of the substrate-peptidase bond under load define key properties required by AAA+ proteases to mechanically unfold and degrade protein substrates.  相似文献   

7.
The ClpA, ClpB, and ClpC subfamilies of the Clp/HSP100 ATPases contain a conserved N-terminal region of approximately 150 residues that consists of two approximate sequence repeats. This sequence from the Escherichia coli ClpA enzyme is shown to encode an independent structural domain (the R domain) that is monomeric and approximately 40% alpha-helical. A ClpA fragment lacking the R domain showed ATP-dependent oligomerization, protein-stimulated ATPase activity, and the ability to complex with the ClpP peptidase and mediate degradation of peptide and protein substrates, including casein and ssrA-tagged proteins. Compared with the activities of the wild-type ClpA, however, those of the ClpA fragment missing the R domain were reduced. These results indicate that the R domain is not required for the basic recognition, unfolding, and translocation functions that allow ClpA-ClpP to degrade some protein substrates, but they suggest that it may play a role in modulating these activities.  相似文献   

8.
Saccharomyces cerevisiae Hsp104, a hexameric member of the Hsp100/Clp subfamily of AAA+ ATPases with two nucleotide binding domains (NBD1 and 2), refolds aggregated proteins in conjunction with Hsp70 molecular chaperones. Hsp104 may act as a "molecular crowbar" to pry aggregates apart and/or may extract proteins from aggregates by unfolding and threading them through the axial channel of the Hsp104 hexamer. Targeting Tyr-662, located in a Gly-Tyr-Val-Gly motif that forms part of the axial channel loop in NBD2, we created conservative (Phe and Trp) and non-conservative (Ala and Lys) amino acid substitutions. Each of these Hsp104 derivatives was comparable to the wild type protein in their ability to hydrolyze ATP, assemble into hexamers, and associate with heat-shock-induced aggregates in living cells. However, only those with conservative substitutions complemented the thermotolerance defect of a Deltahsp104 yeast strain and promoted refolding of aggregated protein in vitro. Monitoring fluorescence from Trp-662 showed that titration of fully assembled molecules with either ATP or ADP progressively quenches fluorescence, suggesting that nucleotide binding determines the position of the loop within the axial channel. A Glu to Lys substitution at residue 645 in the NBD2 axial channel strongly alters the nucleotide-induced change in fluorescence of Trp-662 and specifically impairs in protein refolding. These data establish that the structural integrity of the axial channel through NBD2 is required for Hsp104 function and support the proposal that Hsp104 and ClpB use analogous unfolding/threading mechanisms to promote disaggregation and refolding that other Hsp100s use to promote protein degradation.  相似文献   

9.
ClpP is a highly conserved serine protease that is a critical enzyme in maintaining protein homeostasis and is an important drug target in pathogenic bacteria and various cancers. In its functional form, ClpP is a self-compartmentalizing protease composed of two stacked heptameric rings that allow protein degradation to occur within the catalytic chamber. ATPase chaperones such as ClpX and ClpA are hexameric ATPases that form larger complexes with ClpP and are responsible for the selection and unfolding of protein substrates prior to their degradation by ClpP. Although individual structures of ClpP and ATPase chaperones have offered mechanistic insights into their function and regulation, their structures together as a complex have only been recently determined to high resolution. Here, we discuss the cryoelectron microscopy structures of ClpP-ATPase complexes and describe findings previously inaccessible from individual Clp structures, including how a hexameric ATPase and a tetradecameric ClpP protease work together in a functional complex. We then discuss the consensus mechanism for substrate unfolding and translocation derived from these structures, consider alternative mechanisms, and present their strengths and limitations. Finally, new insights into the allosteric control of ClpP gained from studies using small molecules and gain or loss-of-function mutations are explored. Overall, this review aims to underscore the multilayered regulation of ClpP that may present novel ideas for structure-based drug design.  相似文献   

10.
Clp proteases are found in prokaryotes, mitochondria, and plastids where they play crucial roles in maintaining protein homeostasis (proteostasis). The plant plastid Clp machinery comprises a hetero-oligomeric ClpPRT proteolytic core, ATP-dependent chaperones ClpC and ClpD, and an adaptor protein, ClpS1. ClpS1 selects substrates to the ClpPR protease-ClpC chaperone complex for degradation, but the underlying substrate recognition and delivery mechanisms are currently unclear. Here, we characterize a ClpS1-interacting protein in Arabidopsis thaliana, ClpF, which can interact with the Clp substrate glutamyl-tRNA reductase. ClpF and ClpS1 mutually stimulate their association with ClpC. ClpF, which is only found in photosynthetic eukaryotes, contains bacterial uvrB/C and YccV protein domains and a unique N-terminal domain. We propose a testable model in which ClpS1 and ClpF form a binary adaptor for selective substrate recognition and delivery to ClpC, reflecting an evolutionary adaptation of the Clp system to the plastid proteome.  相似文献   

11.
12.
Clp ATPases are powerful ring shaped nanomachines which participate in the degradation pathway of the protein quality control system, coupling the energy from ATP hydrolysis to threading substrate proteins (SP) through their narrow central pore. Repetitive cycles of sequential intra-ring ATP hydrolysis events induce axial excursions of diaphragm-forming central pore loops that effect the application of mechanical forces onto SPs to promote unfolding and translocation. We perform Langevin dynamics simulations of a coarse-grained model of the ClpY ATPase-SP system to elucidate the molecular details of unfolding and translocation of an α/β model protein. We contrast this mechanism with our previous studies which used an all-α SP. We find conserved aspects of unfolding and translocation mechanisms by allosteric ClpY, including unfolding initiated at the tagged C-terminus and translocation via a power stroke mechanism. Topology-specific aspects include the time scales, the rate limiting steps in the degradation pathway, the effect of force directionality, and the translocase efficacy. Mechanisms of ClpY-assisted unfolding and translocation are distinct from those resulting from non-allosteric mechanical pulling. Bulk unfolding simulations, which mimic Atomic Force Microscopy-type pulling, reveal multiple unfolding pathways initiated at the C-terminus, N-terminus, or simultaneously from both termini. In a non-allosteric ClpY ATPase pore, mechanical pulling with constant velocity yields larger effective forces for SP unfolding, while pulling with constant force results in simultaneous unfolding and translocation.  相似文献   

13.
14.
15.
16.
Licht S  Lee I 《Biochemistry》2008,47(12):3595-3605
Clp, Lon, and FtsH proteases are proteolytic molecular machines that use the free energy of ATP hydrolysis to unfold protein substrates and processively present them to protease active sites. Here we review recent biochemical and structural studies relevant to the mechanism of ATP-dependent processive proteolysis. Despite the significant structural differences among the Clp, Lon, and FtsH proteases, these enzymes share important mechanistic features. In these systems, mechanistic studies have provided evidence for ATP binding and hydrolysis-driven conformational changes that drive translocation of substrates, which has significant implications for the processive mechanism of proteolysis. These studies indicate that the nucleotide (ATP, ADP, or nonhydrolyzable ATP analogues) occupancy of the ATPase binding sites can influence the binding mode and/or binding affinity for protein substrates. A general mechanism is proposed in which the communication between ATPase active sites and protein substrate binding regions coordinates a processive cycle of substrate binding, translocation, proteolysis, and product release.  相似文献   

17.
ClpX and related AAA+ ATPases of the Clp/Hsp100 family are able to denature native proteins. Here, we explore the role of protein stability in ClpX denaturation and subsequent ClpP degradation of model substrates bearing ssrA degradation tags at different positions. ClpXP degraded T. thermophilus RNase-H* with a C-terminal ssrA tag very efficiently, despite the very high global stability of this thermophilic protein. In fact, global thermodynamic stability appears to play little role in susceptibility to degradation, as a far less stable RNase-H*-ssrA mutant was degraded more slowly than wild type by ClpXP and a completely unfolded mutant variant was degraded less than twice as fast as the wild-type parent. When ssrA peptide tags were covalently linked to surface cysteines at positions 114 or 140 of RNase-H*, the conjugates were proteolyzed very slowly. This resistance to degradation was not caused by inaccessibility of the ssrA tag or an inability of ClpXP to degrade proteins with side-chain linked ssrA tags. Our results support a model in which ClpX denatures proteins by initially unfolding structural elements attached to the degradation tag, suggest an important role for the position of the degradation tag and direction of force application, and correlate well with the mapping of local protein stability within RNase-H* by native-state hydrogen exchange.  相似文献   

18.
Clp protease is a high relative molecular mass, ATP-dependent protease found in the cytoplasm of Escherichia coli. Clp protease is composed of two protein components, Clp A, which has ATPase activity, and Clp P, which has the proteolytic active site and is activated by Clp A in the presence of ATP. Clp P subunits (Mr = 21,500) are arranged in two hexagonal rings directly superimposed on each other, and under low salt conditions two dodecamers associate to form a particle with Mr approximately 440,000. Clp A (subunit Mr = 83,000) and Clp P do not associate in the absence of nucleotide, but Clp A with ATP bound associates with Clp P to form an active proteolytic complex with Mr approximately 700,000. Although adenosine 5'-[beta gamma-imido]triphosphate (AMPPNP) weakly promotes association between Clp A and Clp P, non-hydrolysable analogues of ATP do not activate proteolysis, indicating that association between the components is not sufficient to allow proteolysis. Association between Clp A and Clp P does not alter the basal ATPase activity of Clp A, but addition of protein substrates is accompanied by an increase in ATP hydrolysis by Clp A. Chemically-inactivated Clp P or inactive mutants of Clp P also associate with Clp A, but no increase in the ATPase activity of Clp A is observed, either in the presence or absence of protein substrates, when Clp P is inactive. Thus the increased ATP hydrolysis is dependent on active proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The ATP-dependent Clp protease in plant chloroplasts consists of a heterogeneous proteolytic core containing multiple ClpP and ClpR paralogues. In this study, we have examined in detail the only viable knockout mutant to date of one of these subunits in Arabidopsis thaliana, ClpR1. Loss of ClpR1 caused a slow-growth phenotype, with chlorotic leaves during early development that later partially recovered upon maturity. Analysis of the Clp proteolytic core in the clpR1 mutant (clpR1-1) revealed approx. 10% of the wild-type levels remaining, probably due to a relative increase in the closely related ClpR3 protein and its partial substitution of ClpR1 in the core complex. A proteomic approach using an in organello proteolytic assay revealed 19 new potential substrates for the chloroplast Clp protease. Many of these substrates were constitutive enzymes involved in different metabolic pathways, including photosynthetic carbon fixation, nitrogen metabolism and chlorophyll/haem biosynthesis, whereas others function in housekeeping roles such as RNA maturation, protein synthesis and maturation, and recycling processes. In contrast, degradation of the stress-related chloroplast proteins Hsp21 (heat-shock protein 21) and lipoxygenase 2 was unaffected in the clpR1-1 line and thus not facilitated by the Clp protease. Overall, we show that the chloroplast Clp protease is principally a constitutive enzyme that degrades numerous stromal proteins, a feature that almost certainly underlies its vital importance for chloroplast function and plant viability.  相似文献   

20.
The HslUV protease-chaperone complex degrades specific protein substrates in an ATP-dependent reaction. Current models propose that the HslU chaperone, a AAA protein of the Clp/Hsp100 family, binds and unfolds substrates and translocates the polypeptide into the catalytic cavity of the HslV protease. These processes are being characterized using substrates that are targeted to HslUV with a carboxy-terminal fusion of the natural substrate SulA or the carboxy-terminal 11 amino acid residues thereof. In a tandem fusion of green fluorescent protein with SulA, HslUV degrades the SulA moiety but not green fluorescent protein. Wild type and mutant Arc repressor variants are degraded; over a range of substrate stabilities, the specific rate of degradation and its dependence on substrate stability is similar to that of ClpXP. For a hyperstable Arc variant having an intermolecular disulfide bond, the rate of degradation by HslUV is an order of magnitude slower than by ClpXP. Similarity in degradation rates for a subset of substrates by HslUV and ClpXP suggests a similarity in mechanism of the apparent rate-limiting steps of unfolding and translocation by the chaperone components HslU and ClpX. The fall-off in degradation by HslUV for the more stable substrates that are degraded by ClpXP is consistent with the two systems acting on different spectra of biological substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号