首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Twelve genes coding for assembly, acetylation, pyruvylation, polymerization, and secretion of the polysaccharide xanthan gum are clustered together on the chromosome of the bacterium Xanthomonas campestris. These genes (gumBCDEFGHIJKLM) are sufficient for synthesis of xanthan gum when placed in bacteria from a different genus, Sphingomonas. The polysaccharide from the recombinant microorganism is largely indistinguishable, structurally and functionally, from native xanthan gum. These results demonstrate that a complex pathway for biosynthesis of a specific polysaccharide can be acquired by a single inter-generic transfer of genes between bacteria. This suggests the biological and commercial feasibility of synthesizing xanthan gum or other polysaccharides in non-native hosts. Received 23 October 1996/ Accepted in revised form 14 April 1997  相似文献   

2.
【背景】海洋环境中分离到的微泡菌属菌株具有多糖降解能力,在环境中可以作为糖类代谢的重要执行者参与海洋碳循环过程。【目的】测定2株微泡菌属菌株的多糖降解活性,通过与微泡菌属其他菌株基因组比较分析2株菌的多糖降解基因特征。【方法】通过3,5-dinitrosalicylicacid(DNS)定糖法测定多糖降解活性,同时利用高通量测序技术对菌株基因组序列进行测定与组装,并与其他基因组注释结果进行比较分析。【结果】分离得到2株微泡菌属菌株YPW1和YPW16,二者均为潜在新种。结果表明,菌株YPW1能够降解琼胶、褐藻胶、果胶、几丁质、木聚糖、淀粉、普鲁兰等7种多糖,而菌株YPW16仅可降解淀粉和普鲁兰。基因组分析表明,YPW1具有上述7种多糖的降解酶基因,但菌株YPW16只具有淀粉酶与普鲁兰酶降解基因。相较于其他微泡菌属菌株,菌株YPW1多糖降解范围、多糖降解酶基因种类与丰度较高,但菌株YPW16多糖降解范围却较为狭窄。由此可知,多糖降解酶基因在微泡菌属基因组中的分布差异性较大。【结论】本研究为微泡菌属提供了2株潜在的新型菌株资源,为生物多糖降解提供了生化工具,也为研究微泡菌属菌株中多糖降解基...  相似文献   

3.
We have studied the exopolysaccharides (EPS) from a new group of moderately halophilic bacteria belonging to the genus Halomonas. The quantity of EPS produced, its chemical composition and physical properties depend greatly upon the bacterial strain. The majority of the polymers produced viscous solutions and/or emulsified different hydrocarbon compounds. The most interesting strain, S-30, produced EPS at 2.8 g/l with a maximum viscosity of 23.5 Pa·5 and exhibited pseudoplastic behavior. This EPS emulsified five hydrocarbons more efficiently than did four control surfactants tested. Its monosaccharide composition was glucose:galactose:manose:glucuronic acid in equimolar ratio. Some two-thirds of the strains tested emulsified crude oil better than control surfactants did. There are many potential industrial applications for polysaccharides with these qualities. Journal of Industrial Microbiology & Biotechnology (2000)24, 374–378. Received 09 August 1999/ Accepted in revised form 23 March 2000  相似文献   

4.
A mutant strain of the bacterium Pseudomonas sp. ATCC 31461 that exhibited elevated production of the polysaccharide gellan on glucose or corn syrup as a carbon source was isolated. Gellan production by the mutant strain was about twofold higher than its parent strain on glucose or corn syrup after 48 h of growth, and about 1.4-fold higher after 72 h. An increase in biomass production was not correlated with enhanced gellan synthesis by the mutant strain. The increased gellan production by the mutant strain on either carbon source resulted in an increase in its culture medium viscosity and the viscosity of the isolated polysaccharide produced by glucose-grown cells. No differences in the glucuronic acid content of the polysaccharides produced by the mutant and parent strains were observed. Journal of Industrial Microbiology & Biotechnology (2002) 29, 185–188 doi:10.1038/sj.jim.7000278 Received 13 February 2002/ Accepted in revised form 20 May 2002  相似文献   

5.
Microbial polysaccharides have a wide range of functional properties and show high relevance in industrial applications. The possibility to create tailor-made polysaccharides by genetic engineering will further enhance the product portfolio and may open new fields of application. Here, we have examined in detail the recently sequenced genome of the welan-producing strain Sphingomonas sp. ATCC 31555 to identify the complete welan cluster and further genes involved in EPS production. The corresponding genes were compared on the nucleotide and amino acid sequence level to the EPS clusters of the described gellan-producing Sphingomonas elodea ATCC 31461, diutan-producing Sphingomonas sp. ATCC 53159, and the S-88-producing Sphingomonas sp. ATCC 31554 strains. We also compared the previously mentioned strains to each other and included the genes upstream of the main cluster in gellan and welan cluster. The cluster organization of Sphingomonas strain S-7 was also compared based on previous hybridization experiments, without nucleotide sequences. We have found that the occurrence of genes in all biosynthesis clusters is connected to the structures of the various produced sphingans. Along these lines, homologous genes responsible for the assembly of the identical repeating unit generally show high sequence identity, whereas genes for putative side chain attachment urf31, urf31.4, and urf34 vary more in distinct areas. Moreover, gene clusters for biosynthesis of diutan, welan, gellan, and S-88 as well as S-7 are similar in general organization but differ in location and arrangement of some genes. Finally, we summarized genetic and mutational engineering approaches toward modified sphingan variants as described in literature.  相似文献   

6.
Four genes were isolated and characterized for alcohol dehydrogenases (ADHs) catalyzing the oxidation of aromatic alcohols such as benzyl alcohol to their corresponding aldehydes, one from o-xylene-degrading Rhodococcus opacus TKN14 and the other three from n-alkane-degrading Rhodococcus erythropolis PR4. Various aromatic alcohols were bioconverted to their corresponding carboxylic acids using Escherichia coli cells expressing each of the four ADH genes together with an aromatic aldehyde dehydrogenase gene (phnN) from Sphingomonas sp. strain 14DN61. The ADH gene (designated adhA) from strain TKN14 had the ability to biotransform a wide variety of aromatic alcohols, i.e., 2-hydroxymethyl-6-methylnaphthalene, 2-hydroxymethylnaphthalene, xylene-α,α’-diol, 3-chlorobenzyl alcohol, and vanillyl alcohol, in addition to benzyl alcohol with or without a hydroxyl, methyl, or methoxy substitution. In contrast, the three ADH genes of strain PR4 (designated adhA, adhB, and adhC) exhibited lower ability to degrade these alcohols: these genes stimulated the conversion of the alcohol substrates by only threefold or less of the control value. One exception was the conversion of 3-methoxybenzyl alcohol, which was stimulated sevenfold by adhB. A phylogenetic analysis of the amino acid sequences of these four enzymes indicated that they differed from other Zn-dependent ADHs.The first two authors contributed equally to this work  相似文献   

7.
A cluster of genes for diutan polysaccharide synthesis was isolated from a library of Sphingomonas sp. ATCC 53159 genomic DNA by complementation of glucosyl-isoprenylphosphate transferase-deficient mutants of Sphingomonas elodea ATCC 31461 (producing gellan) and Xanthomonas campestris (producing xanthan). The synthesis of polysaccharide in these strains shares a common first step, transfer of glucose-1-phosphate from UDP-glucose to the isoprenylphosphate lipid. The cluster of 24 genes was compared to genes for biosynthesis of gellan, and S-88 sphingan from Sphingomonas sp. ATCC 31554. Diutan, gellan and S-88 sphingan have a common four-sugar backbone but different side chains, one rhamnose for S-88 sphingan, a two-rhamnose side chain for diutan and no side chain for gellan. The genes for biosynthesis of diutan, gellan and S-88 sphingan were similar in general organization but differed in location of some genes, in particular, dpsG (putative polymerase), dpsR (putative lyase) and dpsS (putative repeat unit transporter). An unidentified reading frame urf31, present in the gene clusters for diutan and S-88 sphingan but not gellan, had similarity to glycosyl transferase group 2 proteins, and was detrimental when cloned in Sphingomonas elodea producing gellan that lacks a side chain, but not in Sphingomonas ATCC 31554 producing S-88 sphingan with a rhamnose side chain. Gene urf31 could possibly encode a side-chain rhamnosyl transferase. Another gene urf31.4 was unique to the diutan gene cluster. A plasmid containing 20 of the 24 genes resulted in a slight increase in the amount of diutan produced, but a significant increase in the rheological properties of diutan.  相似文献   

8.
A two-stage fed-batch process was designed to enhance erythritol productivity by the mutant strain of Candida magnoliae. The first stage (or growth stage) was performed in the fed-batch mode where the growth medium was fed when the pH of the culture broth dropped below 4.5. The second stage (or production stage) was started with addition of glucose powder into the culture broth when the cell mass reached about 75 g dry cell weight l−1. When the initial glucose concentration was adjusted to 400 g l−1 in the production stage, 2.8 g l−1 h−1 of overall erythritol productivity and 41% of erythritol conversion yield were achieved, which represented a fivefold increase in erythritol productivity compared with the simple batch fermentation process. A high glucose concentration in the production phase resulted in formation of organic acids including citrate and butyrate. An increase in dissolved oxygen level caused formation of gluconic acid instead of citric acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 100–103. Received 25 February 2000/ Accepted in revised form 08 June 2000  相似文献   

9.
Trihydroxy unsaturated fatty acids with 18 carbons have been reported as plant self-defense substances. Their production in nature is rare and is found mainly in plant systems. Previously, we reported that a new bacterial isolate, Pseudomonas aeruginosa PR3, converted oleic acid and ricinoleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid and 7,10,12-trihydroxy-8(E)-octadecenoic acid, respectively. Here we report that strain PR3 converted linoleic acid to two compounds: 9,10,13-trihydroxy-11(E)-octadecenoic acid (9,10,13-THOD) and 9,12,13-trihydroxy-10(E)-octadecenoic acid (9,12,13-THOD). Stereochemical analyses showed the presence of 16 different diastereomers — the maximum number possible. The optimum reaction temperature and pH for THOD production were 30°C and 7.0, respectively. The optimum linoleic acid concentration was 10 mg/ml. The most effective single carbon and nitrogen sources were glucose and sodium glutamate, respectively. However, when a mixture of yeast extract (0.05%), (NH4)2HPO4 (0.2%), and NH4NO3 (0.1%) was used as the nitrogen source, THOD production was higher by 8.3% than when sodium glutamate was the nitrogen source. Maximum production of total THOD with 44% conversion of substrate was achieved at 72 h of incubation, after which THOD production plateaued up to 240 h. THOD production and cell growth increased in parallel with glucose concentration up to 0.3%, after which cell growth reached its maximum and THOD production did not increase. These results suggested that THODs were not metabolized by strain PR3. This is the first report of microbial production of 9,10,13- and 9,12,13-THOD from linoleic acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 109–115. Received 18 March 2000/ Accepted in revised form 09 June 2000  相似文献   

10.
Three strains of Sphingomonas were grown as biofilms and tested for binding of five fluorescently labeled lectins (Con A-type IV-TRITC or -Cy5, Pha-E-TRITC, PNA-TRITC, UEA 1-TRITC, and WGA-Texas red). Only ConA and WGA were significantly bound by the biofilms. Binding of the five lectins to artificial biofilms made of the commercially available Sphingomonas extracellular polysaccharides was similar to binding to living biofilms. Staining of the living and artificial biofilms by ConA might be explained as binding of the lectin to the terminal mannosyl and terminal glucosyl residues in the polysaccharides secreted by Sphingomonas as well as to the terminal mannosyl residue in glycosphingolipids. Staining of the biofilms by WGA could only be explained as binding to the Sphingomonas glycosphingolipid membrane, binding to the cell wall, or nonspecific binding. Glycoconjugation of ConA and WGA with the target sugars glucose and N-acetylglucosamine, respectively, was used as a method for evaluation of the specificity of the lectins towards Sphingomonas biofilms and Sphingomonas polysaccharides. Our results show that the binding of lectins to biofilms does not necessarily prove the presence of specific target sugars in the extracellular polymeric substances (EPS) in biofilms. The lectins may bind to non-EPS targets or adhere nonspecifically to components of the biofilm matrix.  相似文献   

11.
The endosperm cell walls of mature coffee seeds accumulate large amounts of mannan storage polysaccharides, which serve as nutrient reserve for embryo and contribute to beverage quality. Our study investigated the evolutionary patterns of key galactomannan (GM) biosynthesis genes using dN/dS ratio, synteny, and phylogenetic analysis and detected heterogeneity in rate of evolution among gene copies. Selection ratio index revealed evidence of positive selection in the branch editing gene Coffea canephora alpha (α) galactosidase (Cc‐alpha Gal) at Cc11_g15950 copy (ω = 1.12), whereas strong purifying selection on deleterious mutations was observed in the Coffea canephora uridine diphosphate (UDP)‐glucose 4′‐epimerase (Cc‐UG4E) and Coffea canephora mannose‐1P guanylytransferase (Cc‐MGT) genes controlling the crucial nucleotide carbon sugar building blocks flux in the pathway. Relatively low sequence diversity and strong syntenic linkages were detected in all GM pathway genes except in Cc‐alpha Gal, which suggests a correlation between selection pressure and nucleotide diversity or synteny analysis. In addition, phylogenetic analysis revealed independent evolution or expansion of GM pathway genes in different plant species, with no obvious inferable clustering patterns according to either gene family or congruent with evolutionary plants lineages tested due to high dynamic nature and specific biochemical cell wall modification requirements. Altogether, our study shows a significant high rate of evolutionary variation among GM pathway genes in the diploid C. canephora and demonstrates the inherent variation in evolution of gene copies and their potential role in understanding selection rates in a homogenously connected metabolic pathway.  相似文献   

12.
Kinetics of kojic acid fermentation by Aspergillus flavus Link 44-1 using various sources of carbon [glucose, xylose, sucrose, starch, maltose, lactose or fructose] and nitrogen [NH4Cl, (NH4)2S2O8, (NH4)2NO3, yeast extract or peptone] were analyzed using models based on logistic and Luedeking–Piret equations. The highest kojic acid production (39.90 g l−1) in submerged batch fermentation was obtained when 100 g l−1 glucose was used as a carbon source. Organic nitrogen sources such as peptone and yeast extract were favorable for kojic acid production as compared to inorganic nitrogen sources. Yeast extract at 5 g l−1 was optimal. The optimal carbon to nitrogen (C/N) ratio for kojic acid fermentation was 93.3. In a resuspended cell system, the rate of glucose conversion to kojic acid by cell-bound enzymes increased with increasing glucose concentration up to 70 g l−1, suggesting that the reaction followed the Michaelis–Menten enzyme kinetic model. The value of K m and V max for the reaction was 18.47 g l−1 glucose and 0.154 g l−1 h−1, respectively. Journal of Industrial Microbiology & Biotechnology (2000) 25, 20–24. Received 13 October 1999/ Accepted in revised form 02 April 2000  相似文献   

13.
14.
The mineralization of 14C-phenanthrene, sorbed to porous synthetic amberlite sorbents, i.e., IRC50, XAD7-HP, and XAD2, by three phenanthrene-degrading Mycobacterium soil isolates, i.e., strains VM552, VM531, and VM451 and three phenanthrene-degrading Sphingomonas soil isolates, i.e., strains LH162, EPA505 and LH227, was compared. In P-buffer and in the presence of IRC50, for all strains the maximum rate of mineralization of 14C-phenanthrene was significantly higher (1.1–1.9 ng ml−1 h−1) than the initial abiotic desorption rate (0.2 ng ml−1 h−1), indicating that both Mycobacterium and Sphingomonas utilize sorbed phenanthrene with a higher rate than can be explained by abiotic desorption. Because all Mycobacterium and Sphingomonas strains belonged to different species, it can be suggested that this feature is intrinsic to those genera rather than a specific feature of a particular strain. The final mineralization extent in P-buffer in the presence of IRC50 was about a factor of two higher for the Mycobacterium strains compared to the Sphingomonas strains. Moreover, a significantly higher normalized phenanthrene mineralization ratio in the presence of IRC50 to the control (without IRC50) was found for the Mycobacterium strains compared to the normalized ratio found for the Sphingomonas strains. Addition of minimal nutrients had a more beneficial effect on phenanthrene mineralization by Sphingomonas compared to Mycobacterium, resulting into similar mineralization extents and rates for both types of strains in the presence of IRC50. Our results show that Mycobacterium is better adapted to utilization of sorbed phenanthrene compared to Sphingomonas, especially in nutrient-poor conditions.  相似文献   

15.
In arbuscular mycorrhizas, H+-ATPase is active in the plant membrane around arbuscules but absent from plant mutants defective in arbuscule development (Gianinazzi-Pearson et al. 1995, Can J Bot 73: S526–S532). The proton-pumping H+-ATPase is encoded by a family of genes in plants. Immunocytochemical studies and promoter-gusA fusion assays were performed in transgenic tobacco (Nicotiana tabacum L.) to determine whether the periarbuscular enzyme activity results from de-novo activation of plant genes by an arbuscular mycorrhizal fungus. The H+-ATPase protein was localized in the plant membrane around arbuscule hyphae. The enzyme was absent from non-colonized cortical cells. Regulation of seven H+-ATPase genes (pma) was compared in non-mycorrhizal and mycorrhizal roots by histochemical detection of β-glucuronidase (GUS) activity. Two genes (pma2, pma4) were induced in arbuscule-containing cells of mycorrhizal roots but not in non-mycorrhizal cortical tissues or senescent mycorrhiza. It is concluded that de-novo H+-ATPase activity in the periarbuscular membrane results from selective induction of two H+-ATPase genes, which can have diverse roles in plant-fungal interactions at the symbiotic interface. Received: 23 October 1999 / Accepted: 7 February 2000  相似文献   

16.
17.
18.
Summary Plasmodium species exhibit the unprecedented situation of distinct, stage-specific rRNA sequences. We present an analysis of two pairs of sequences of the small rRNA subunit (Plasmodium falciparum andPlasmodium berghei) and show that these genes do not evolve independently and that in fact their evolution is dominated by gene conversion. This analysis also shows that no extensive stage-specific sequences are conserved in the two species, thus rendering unlikely that the existence of stage-specific rRNA genes results from a requirement for distinct rRNA types.  相似文献   

19.
A set of random transposon vectors pUTTns that facilitates the markerless integration of new functions into the chromosome of gram-negative bacteria has been developed. The vectors, which are derived from mini-Tn5 transposons, are located on a R6K-based suicide delivery plasmid that provides the IS50R transposase tnp gene in cis, but they are external to the mobile element. The vectors' conjugal transfer to recipients is mediated by RP4 mobilization functions in the donor. Internal to the mini-Tn5 element is a cassette that contains a selectable antibiotic resistance marker (kanamycin, chloramphenicol, or tetracycline resistance gene), a counter-selectable marker (sacB), a 430-bp repeat of the sacB gene 3′ end acted as the directly-repeated (DR) sequence, and modified multiple cloning sites (MCS). After two total rounds of transposon integration and recombination between the two DRs, only the exogenous DNA inserted into the MCS (passenger genes) and a single 430-bp scar sacBDR fragment remained in the chromosome after excision. The utility of these vectors was demonstrated by integrating the organophosphorus insecticide hydrolase gene (mpd) into the chromosome of Escherichia, Pseudomonas, Sphingomonas, and Paracoccus species. Sequential integration of another organophosphorus insecticide hydrolase gene (oph) into the previously engineered bacteria, without bringing any selectable markers, was also successful. These engineered bacteria were relatively stable. Cell viability and original degrading characteristics were not affected compared with the original recipients. This shows that the developed system is very useful for the markerless integration of exogenous genes into the chromosome of gram-negative eubacteria.  相似文献   

20.
【背景】马克斯克鲁维酵母(Kluyveromyces marxianus)具有完整的木糖代谢途径,可以高效利用木质纤维素中的木糖,因此对其糖转运蛋白基因的研究或可有效解决酵母木糖转运的相关问题。【目的】根据马克斯克鲁维酵母DMKU3-1042中KLMA_70145和KLMA_80101基因位点的功能预测,获得马克斯克鲁维酵母GX-UN120相应的糖转运蛋白基因序列并探究其功能。【方法】将转运蛋白基因分别克隆表达至酿酒酵母EBY.VW4000中考察重组菌株生长特性,以此间接评价对应转运蛋白的转运能力。【结果】Km_SUT2基因编码的糖转运蛋白可有效提高宿主细胞转运木糖、阿拉伯糖、山梨糖、核糖、乳糖和葡萄糖的能力,但却不能转运甘露糖、果糖、蔗糖和半乳糖。类似地,Km_SUT3基因编码的糖转运蛋白可提高细胞转运木糖、阿拉伯糖、山梨糖、半乳糖、核糖、乳糖和葡萄糖的能力,但却不能转运甘露糖和果糖。然而在葡萄糖存在的条件下,重组菌株对各种碳源的利用均受抑制,但Km_SUT3转运木糖和核糖过程中受葡萄糖的抑制作用较小。【结论】马克斯克鲁维酵母GX-UN120中转运蛋白Km_SUT2和Km_SUT3可...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号