首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 20- to 50-fold increase in cytolytic T lymphocyte (CTL) activity caused by the addition of 50 muM 2-mercaptoethanol (2-ME) at the onset of a one-way murine mixed leukocyte culture (MLC) between C57BL/6 and DBA/2 splenic lymphocytes appears to be unrelated to early events in the culture: if 2-ME was present for the first 24 hr of culture only, there was no increase on day 4, but if addition of 2-ME was delayed until the last 24 hr of culture, the CTL activity was almost as high as that of cultures that were exposed to 2-ME for the entire 4-day culture period. The increase of CTL activity caused by delayed addition of 2-ME ("2-ME rescue") was used to investigate the mechanism by which the thiol induces differentiation of CTL from precursor cells. 2-ME rescue was mimicked by two other thiols, dithiothreitol and cysteamine phosphate, but at higher concentrations. Because the latter compound has no free sulhydryl group until it diffuses into cells and is enzymatically dephosphorylated, we conclude that thiols may increase the differentiation of CTL from precursor cells by an intracellular process involving free sulphydryl groups rather than by interaction with membrane sulfhydryls or destruction of inhibitor cells or their products. Cell separation experiments indicated that 2-ME rescue was independent of the presence of B lymphocytes and of adherent cells (macrophages) and was restricted to a subpopulation of T lymphocytes that developed into large lymphoid precursor cells during the first 3 days in culture even without 2-ME. The development of this subpopulation required DNA synthesis between 24 nad 72 hr after the onset of MLC. When 2-ME was added to day-3 MLC, CTL activity increased slightly as early as 4 hr later, but the major increase occurred during the second half of the 24 hr "rescue"period. Because this increase was inhibited by cytosine arabinoside (ARA-C), it seems likely that DNA synthesis is associated with and may be required for the differentiation of large precursor lymphoid cells into CTL after the addition of 2-ME.  相似文献   

2.
Depletion of macrophages from immune spleen cells by treatment with carbonyl iron and magnet or by in vivo treatment with carrageenan enhanced the in vitro secondary cell-mediated cytotoxic response against a syngeneic Friend virus-induced leukemia, FBL-3 cells of C57BL/6 mice. However, further depletion of macrophages by passing the carbonyl iron-treated immune spleen cells through a nylon wool column abrogated the cytotoxic response. The addition of splenic macrophage-enriched preparations from either FBL-3-immune or normal mice suppressed the cytotoxic response of immune spleen cells treated with carbonyl iron and magnet. This suppressive effect of splenic macrophages presented a marked contrast with the enhancing effect of normal peritoneal macrophages on the same cell-mediated cytotoxic response, indicating regulation of the generation of killer T cells against a syngeneic tumor by functionally distinct macrophages. The suppressed cell-mediated cytotoxic response against FBL-3 cells by immune spleen cells was augmented by the addition of indomethacin to the culture medium, and this augmentation with indomethacin was greatly decreased by depletion of phagocytic cells from the immune spleen by treatment with carbonyl iron and magnet. The mechanisms of regulation of the cell-mediated cytotoxic response with soluble factors released from macrophages are discussed.  相似文献   

3.
In the absence of specific antigen stimulation, nonspecific killer cells were induced by culturing C57BL/6 lymph node or spleen cells with interleukin 2-containing supernatants. These supernatants were obtained from stimulation of either rat spleen cells with concanavalin A or a variant of the T cell lymphoma, EL4 (H-2b) with phorbol myristic acetate. The ability of the EL4 supernatant to induce nonspecific killer cells was abrogated by absorption with an interleukin 2-dependent T cell line or by concanavalin A-stimulated spleen cell blasts, but not by lipopolysaccharide-stimulated spleen cell blasts or by a non-interleukin 2-producing EL4 line. Partially purified interleukin 2 from EL4 supernatants could also support nonspecific killer cell induction. The induction of cytolytic cells by interleukin 2 is sensitive to gamma-irradiation and has a D omicron of 120 rad. The nonspecific killer cells induced are likely cytotoxic T lymphocytes; the majority of the precursor and effector cells bear the Thy-1 alloantigen marker. These nonspecific killer cells killed a broad spectrum of target cells, including concanavalin A- and lipopolysaccharide-induced splenic blasts of syngeneic or allogeneic mice, a syngeneic tumor, and a cloned allogeneic cytotoxic T cell line. The frequency of precursors for nonspecific killer cells in C57BL/6 lymph node and spleen cells are 1/7000 and 1/12,000, respectively. Clonal analyses revealed that these nonspecific killers exhibit heterogeneity with respect to their target cell specificities. The induction of nonspecific killers by interleukin 2-containing supernatants is partially dependent on nylon wool-adherent cells; in antigen-stimulated cultures the most specific killer cells were obtained from cultures in which nylon wool-nonadherent lymph node responder cells were stimulated with nylon wool-nonadherent allogeneic splenic stimulator cells that were treated with anti-Thy-1 antibody and complement. The relevance of these findings with respect to the frequencies and fine specificities of cytotoxic T lymphocytes generated in interleukin 2-supplemented cultures is discussed.  相似文献   

4.
Sensitivity to L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) was used to characterize the phenotype of human activated killer cells. Natural killer cells (NK) and the precursors of both the alloantigen-specific cytotoxic T lymphocytes (CTL) and the NK-like activated killer cells generated after stimulation with allogeneic cells were deleted from human peripheral blood lymphocytes by preincubation with Leu-Leu-OMe. It was noted, however, that cytotoxic lymphocytes could be generated from Leu-Leu-OMe-treated lymphocyte precursors after 2 to 6 days of culture with the nonspecific mitogen, phytohemagglutinin (PHA). The characteristics of these killer cells indicated that they were a unique population that could be distinguished from other cytotoxic cells. Killing by these cells exhibited slow kinetics in that 18 hr cytotoxicity assays were required to detect full cytotoxic potential. When 18 hr assays were used, PHA-stimulated cytotoxic cells generated from Leu-Leu-OMe-treated lymphocytes were able to kill both NK-sensitive K562 cells and the relatively NK-resistant renal cell carcinoma cell line, Cur. These cytotoxic lymphocytes were HNK-1, Leu-11b (CD16), and OKM1 (CR3)-negative at both the precursor and effector stage of activation. Furthermore, these cells were derived from a CD3-positive precursor. Finally, killing by activated effectors was inhibited by OKT3. Unlike activation of Leu-Leu-OMe-sensitive large granular lymphocytes, generation of these cytotoxic T cells was totally prevented by treatment with mitomycin c before stimulation. Thus, a unique class of tumoricidal T cells can be characterized by resistance of lymphocyte precursors to a concentration of Leu-Leu-OMe, which has been shown to ablate NK, mixed lymphocyte culture-activated NK-like cytotoxic precursors, and the precursors of alloantigen-specific CTL.  相似文献   

5.
The macrophage tumor cell line J774.1 replaced the function of normal macrophages in the induction of polyclonal killer T cells with 2-mercaptoethanol. J774.1 does not normally release soluble factor(s) which we have shown to be responsible for the differentiation of T cells to killer T cells. However, stimulation of J774.1 with LPS induced soluble factor(s) for T cell activation. An optimum concentration of LPS for the production of soluble factor(s) was 1 to 10 microgram/ml, which completely inhibited growth of the tumor cells. The production of soluble factor(s) was observed within 6 hr after LPS stimulation and reached its maximum level at 24 hr. Incubation of the cell line with 8Br-cyclic AMP and theophylline induced soluble factor(s), suggesting that LPS stimulation induced an increase in intracellular cyclic AMP which leads to the synthesis of soluble factor(s).  相似文献   

6.
Normal splenic lymphocytes from BDF1 mice were cultured on ovalbumin (OA)-bearing syngeneic peritoneal adherent cells for 5 days and their subsequent helper function was tested by an adoptive transfer technique. Lymphocytes harvested from the culture were mixed with DNP-KLH-primed spleen cells and transferred into irradiated syngeneic mice followed by challenge with DNP-OA. The results showed that the cultured lymphocytes has helper function for both IgE and IgG anti-DNP antibody responses. Depletion of mast cells and T cells in the peritoneal adherent cell preparations did not affect the generation of helper cells in the culture. The helper function of the cultured lymphocytes was abolished by the treatment with anti-theta antiserum and complement and was specific for ovalbumin. The OA-specific helper T cells were generated in vitro by the culture of a T cell-rich fraction of normal spleen on T cell-depleted OA-bearing peritoneal cells. If the normal splenic lymphocytes or T cell-rich fraction were cultured with 10 mug/ml of OA in the absence of macrophages, cultured lymphocytes lacked helper function. The transfer of splenic lymphocytes or splenic T cells cultured with soluble OA to normal non-irradiated mice, however, suppressed both IgG and IgE antibody responses of the recipients to subsequent immunization with DNP-OA. The suppressor cells were sensitive to anti-theta antiserum and complement and their activity was specific for OA. The cultured cells transferred into normal mice did not suppress anti-hapten antibody response to DNP-KLH. Normal lymphocytes cultured on OA-bearing macrophages and had helper function in adoptive transfer experiments failed to suppress antibody response of non-irradiated recipients to DNP-OA. The results indicate that OA-bearing macrophages primed T cells and generated helper T cells, whereas the culture of normal lymphocytes with soluble OA in the absence of macrophages generated suppressor T cells.  相似文献   

7.
We analyzed the mechanism by which accessory cells support the induction of the proliferation of human peripheral blood T cells by a monoclonal anti-CD3 antibody, OKT3. Cross-linking of T cell receptor/CD3 complex by anti-CD3 coupled to latex beads and the addition of IL-1 are not enough to induce the IL-2 production and proliferation of T cells extensively depleted of accessory cells, while the addition of both the culture supernatant of macrophages or a monoblastic cell line, U937 cells, and the paraformaldehyde-fixed macrophages or U937 cells which had been precultured with interferon-gamma before fixation into the culture of the T cells with anti-CD3-latex did induce the T cell proliferation. Lack of the addition of either one of these did not induce the response. These results indicate that the signal(s) delivered by soluble factors released from the accessory cells and that delivered by the physical interaction between accessory cells and T cells are both required for the induction of IL 2 production and proliferation of T cells by anti-CD3-latex. Importantly, the macrophages or U937 cells had to be cultured with Con A-stimulated lymphocyte culture supernatant or IFN-gamma prior to fixation with paraformaldehyde, suggesting that a molecule(s) inducible on accessory cells surface by IFN-gamma or other lymphokine is necessary for the effective accessory cell-T cell interaction to induce the T cell response. It was further revealed that the activity of the culture supernatant of accessory cells may be mediated synergistically by IL 1 and a certain other factor(s) and was actually shown to be replaced by the combined addition of rIL-1 and rIL-6 but not by rIL-1 alone. The experimental system described here will be very useful for dissecting the accessory functions for T cell activation.  相似文献   

8.
In an effort to determine the mechanism by which autologous monocytes are killed by lymphokine-activated killer cells, soluble mediators were examined for their direct effect on target cells. Extracellular ATP (ATPo), but not ADP, was found to lyse human culture-derived macrophages in a 6-h 51Cr-release assay. Treatment of monocytes with human rIFN-gamma rendered those cells significantly more sensitive to ATPo compared to untreated or granulocyte-macrophage CSF-(GM-CSF) treated cells. In addition, IFN-gamma-treated macrophages released approximately 80% of 51Cr label within 15 min after the addition of ATPo, whereas GM-CSF-treated cells did not release significant levels of radiolabel until 4 to 6 h after initial stimulation with ATPo. Time course studies also demonstrated that 3 days of incubation of macrophages with IFN-gamma induced optimal sensitivity to ATPo, although some effect was noted after 4 h of incubation. Thus, IFN-gamma treatment of macrophages elicited increased sensitivity to ATPo-mediated lysis, a phenomenon characterized by rapid release of 51Cr from labeled cells and which is possibly due to induction or activation of surface ATP-binding receptors different from those present on GM-CSF-treated or untreated macrophages.  相似文献   

9.
A range of monosaccharides was tested for its ability to inhibit the generation of cytotoxic cells during mixed lymphocyte culture. The most discriminatory effect was produced by N-acetyl-D-galactosamine (NADG). The presence of this sugar at the initiation of the coculture significantly inhibited in a dose-dependent manner the induction of a subset of nonspecific activated lymphocyte (ALK) cells preferentially able to lyse the K562 target cell (natural killer, NK-like cells) but had no effect on the generation of either specific cytotoxic T lymphocytes or another separate subset of ALK cells mediating lysis of an NK-insensitive melanoma cell line. The addition of conditioned medium containing interleukin 2 and interferon (IFN) at the start of culture reversed the inhibitory effect of the sugar. Under conditions of limiting dilution, the frequency of NK-like precursors ranged from 1/50 to 1/1200 with different mononuclear cells (MNC) and in all cases the presence of NADG from Day 0 of culture selectively decreased the frequency of these precursors. At the concentrations used NADG had no effect on NK-like cell cytolysis once generated. The addition of recombinant gamma-IFN did not abrogate the inhibitory effect of NADG and in MLC of some individuals decreased the frequencies of ALK cell precursors. These data provide further evidence for the heterogeneity of ALK cells and indicate that what is usually referred to as NK-like cell activity in in vitro culture is mediated by a subpopulation of MNC which are activated and induced to differentiate along a pathway independent of that of other ALK subsets.  相似文献   

10.
Absolute macrophage dependency of T lymphocyte activation by mitogens.   总被引:50,自引:0,他引:50  
A T lymphocyte subpopulation that contains only 0.3% macrophages and less than 2% B lymphocytes has been prepared from guinea pig lymph node cells by the use of two different types of adherence columns. This subpopulation does not porliferate in response to the mitogens Con A or PHA unless additional macrophages are added. The means by which macrophages restore T cell responsiveness to PHA has been investigated. Marcophages appear to function via two different distinct mechanisms in this experimental situation. The first mechanism involves the binding of PHA to the macrophage followed by the "presentation" of the mitogen to the T lymphocyte in a manner that induces cell activation. This presentation function requires that the macrophage be viable and metabolically active. The second mechanism by which macrophages function is by the elaboration of a soluble factor or factors. The presence of these factors has been reliably and reproducibly demonstrated by using a double-chambered, Marbrook-type tissue culture vessel. This soluble factor can induce activation of T lympohcytes with surface bound PHA in the apparent absence of any form of macrophage presentation. In contrast, the function of this factor is clearly distinct from that of the reducing agent, 2-mercaptoethanol, (2-ME) since 2-ME does not enable this T cell subpopulation to be activated by mitogens. On the basis of these observations, we propose that two distinct signals are required to activate this T lymphocyte subpopulation. One signal is delivered by the interaction of the mitogen with the T cell surface, and the second signal is delivered by a soluble factor(s) produced by macrophages. Whether all types of T lymphocytes require two signals to be activated, remains to be established.  相似文献   

11.
Summary High levels of cytotoxic activity against the natural killer (NK) cell-sensitive target K562 and the NK-resistant target UCLA-SO-M14 (M14) can be generated in vitro either by mixed lymphocyte culture (MLC) or by culture of lymphocytes in interleukin 2 (IL2) (lymphokine activated killer (LAK) cells). The purpose of this study was to identify similarities and differences between MLC-LAK and IL2-LAK cells and allospecific cytotoxic T cells. Induction of cytotoxicity against K562 and M14 in both culture systems was inhibited by antibodies specific either for IL2 or the Tac IL2 receptor. Like NK effector cells, the precursors for the MLC-LAK cells were low density large lymphocytes. However these precursors differed from the large granular lymphocytes that mediated NK cytolysis in sensitivity to the toxic lysosomotropic agent L-leucine methyl ester (LME). The resistance of the MLC-LAK precursors to LME indicated that the precursors included large agranular lymphocytes. Although interferon-gamma (IFN-gamma) is produced in MLC and in IL2 containing cultures, it is not required for induction of either type of cytotoxic activity. Neutralization of IFN-gamma in MLC-and IL2-containing cultures with specific antibodies had no effect on the induction of cytotoxic activities. Both allospecific cytotoxic T lymphocyte (CTL) and LAK activities were enhanced by IL2 and IFN-gamma at the effector cell stage. However, the mechanism of cytolysis was different in the two systems. NK- and MLC-induced LAK activities were independent of CD3-T cell receptor complex while CTL activity was blocked by monoclonal antibodies specific for the CD3 antigen. These results suggest that NK and the in vitro induced LAK cytotoxicities are a family of related functions that differ from CTL. Furthermore, MLC-induced and IL2-induced cytotoxicities against K562 and M14 appear to be identical.This work was supported by NIH grant CA34442  相似文献   

12.
The mechanism by which 2-ME acts as a macrophage-substitute for the induction of a primary PFC response to SRC in vitro was studied in macrophage-depleted mouse spleen cell cultures. 2-ME could replace macrophages only in FCS-supplemented cultures. Evidence is presented that the function of 2-ME is independent of residual macrophages. Neither normal nor macrophage-depleted spleen cell cultures from congenitally athymic nude mice supplemented with 2-ME, with or without FCS, could give rise to a primary in vitro anti-SRC immune response. 2-ME, at an optimal concentration of 10(-5) M, induced DNA synthesis in normal and macrophage-depleted spleen cells in both FCS-containing and serum-free cultures. The peak response occurred on day 3. The stimulation was accompanied by a polyclonal B cell activation to antibody secretion which was much more pronounced in FCS-containing than in serum-free cultures. Spleen cells from nude mice showed a weaker DNA stimulation than did cells from normal mice in FCS-containing cultures, and nearly no response under serum-free conditions. T cells obtained by a nylon column adherence method from normal mouse spleen cells showed good DNA synthetic responses in FCS-containing, but no response in serum-free cultures. These results show that 2-ME has weak mitogenic activity for B cells, and in combination with FCS, strong mitogenic activity for T cells. Since the macrophage provides stimulation to the T cell in the primary anti-SRC PFC response in vitro, these results suggest that the direct mitogenic activity of 2-ME with FCS on T cells provides the functional substitution for macrophages.  相似文献   

13.
Unprimed murine lymphocytes maintained in culture medium containing fetal calf serum (FCS) and 2-mercaptoethanol (2-ME) developed very high levels of anti-trinitrophenyl (TNP) plaque forming cells (PFC). Both FCS and 2-ME contributed to the response. The development of anti-TNP PFC during culture was accompanied by a 10-fold expansion in the number of immunoglobulin-secreting cells, indicating polyclonal stimulation. However, the number of anti-TNP PFC was disproportionately high and not accompanied by a similar increase in plaques specific for sheep red blood cells. The TNP-specific plaques were not artifacts of the plaque assay since they were 98% inhibited by specific antigen. The in vitro induction of anti-TNP PFC by FCS and 2-ME was common to a number of mouse strains, although some genetic variation occurred. Nylon-wool-separated B cells, nude mouse spleen cells, and bone marrow cells all produced high levels of anti-TNP after culture with medium containing FCS and 2-ME. The addition of T cells to B-cell cultures increased the numbers of anti-TNP PFC by 1.5- to 2.5-fold. The presence of a TNP-cross-reacting antigen in FCS probably contributed to the unexpectedly high anti-TNP response. The response to the antigen in FCS was potentiated by the enhancing activity of 2-ME.  相似文献   

14.
The generation of T helper cells in vitro requires macrophages or macrophage-derived factors such as genetically related macrophage factor (GRF) or nonspecific macrophage factor (NMF). However, there is a basic difference of T helper cell induction when using particulate antigens. The present study demonstrates that this difference is based on the activation of two different T cell subsets. GRF activates short-lived 'T1' cells which amplify the induction of T2 cells, which are the helper cell precursors. Thus, the genetic restriction of T helper cell induction seen with soluble antigen or GRF lies on the level of macrophage or GRF interaction with T1 cells. NMF (or macrophages) and particulate antigens directly activate the helper cell precursor (T2) indicating no requirement for T1-T2 cooperation. The direct activation of the helper cell precursor with particulate antigens does not require histocompatible macrophages or NMF from histocompatible macrophages. The present results may explain some of the discrepancies reported in the literature concerning the genetic requirements and specificity of T cell activation.  相似文献   

15.
We had previously shown that the signal of activation delivered via CD2 varies according to the mitogenic pair of CD2 mAb used. We had selected two typical mAb pairs, D66 + T11(1) and GT2 + T11(1), the former delivering the "richest" signal, the latter the poorest. Here we analyzed the cytolytic activities generated within PBL-stimulated by these two pairs. When purified CD2+,3- cells were cultured with either one of these two pairs, no significant lymphokine-activated killer (LAK) activity--namely the activity exerted on NK-resistant malignant cell lines or fresh tumor cells--was detected, thereby demonstrating the inability of CD2 mAb pairs to directly trigger the LAK precursors. By contrast, when purified CD2+,3+ cells were cultured, only D66 + T11(1) was able to trigger a potent CTL activity, as judged by targeting their activity, at the effector phase, with a bridging CD3 mAb on a FcR+ target cell or by using heteroaggregates on FcR- malignant cells. When whole PBL were used, a similar and moderate LAK activity was generated after culture with either one of the 2 CD2 mAb pairs. This, in fact, masked quite different events. The amounts of endogeneous IL-2 released in PBL cultures with GT2 + T11(1) was rather low, although it was sufficiently high in PBL cultures with D66 + T11(1) to generate a potent LAK activity. Yet, PBL stimulated with D66 + T11(1) released concomitantly a high amount of IL-4 which inhibited the development of the LAK activity, as demonstrated by unmasking this activity with an anti-IL4 antiserum and which did not inhibit the T CTL activity; this IL-4 secretion was not seen with GT2 + T11(1). Therefore, stimulation by these two typical CD2 mAb pairs induce a striking different pattern of IL synthesis.  相似文献   

16.
The cellular site of action of SIRS, a soluble immune response suppressor released by Con A-activated spleen cells which suppresses antibody responses to heterologous erythrocytes by murine spleen cells in vitro, was investigated. Exposure of spleen cells to SIRS for 2 hr at 37 degrees C or 1 hr at 4 degrees C was sufficient to suppress 5-day antibody responses in vitro. Similar exposure of splenic or peritoneal exudate macrophages to SIRS also suppressed antibody responses by untreated splenic lymphoid cells; exposure of splenic lymphoid cells to SIRS was without effect. SIRS did not act via T cells which might have contaminated the macrophage preparations. SIRS-mediated suppression could be partially overcome by an excess of normal peritoneal exudate macrophages, but not by an excess of T or B cells. These data indicate that the target cell of SIRS activity is the macrophage. The results are discussed in the context of macrophage functions that could be affected by SIRS.  相似文献   

17.
T cell induction of membrane IL 1 on macrophages   总被引:6,自引:0,他引:6  
We have studied the role of T cells in the induction of a membrane-associated form of interleukin 1 (mIL 1) in murine macrophages. T helper cell clones and a T cell hybridoma induced macrophages to express mIL 1 after an antigen-specific, Ia-restricted interaction. Induction of mIL 1 was proportional to antigen concentration and was increased in the early course of the response in macrophages pretreated in culture with interferon-gamma. mIL 1 activity was detectable 4 hr after interaction with T cells. mIL 1 induction was inhibited by antibodies to either class II molecules or the T cell receptor. Two pathways of T cell-mediated mIL 1 induction could be defined. In the first, T cells, whose protein synthesizing capacity was completely eliminated by pretreatment with the irreversible protein synthesis inhibitor emetine, induced levels of mIL 1 expression indistinguishable from controls. In the second, T cells stimulated by paraformaldehyde-fixed macrophages in the presence of concanavalin A or antigen secreted a soluble factor that induced macrophage mIL 1 expression. Thus, it appears that T cells may induce macrophages to express mIL 1 both by direct cell-cell contact mediated through binding of T cell receptor to the Ia/antigen complex, and through the release of a lymphokine after activation. This lymphokine does not appear to be IL 2, IFN-gamma, BSF-1, or CSF-1.  相似文献   

18.
Human blood mononuclear cells were separated into Leu-11+7-NK, Leu-11-7+, and Leu-11-7-T cells by means of a combination of the Percoll gradient method and C-mediated cytolysis using mAb. When purified Leu-11+7-NK, Leu-11-7+, and Leu-11-7-T cells were cultured with rIL 2 (500 U/ml) for 6 days in a medium supplemented with 10% FCS, Leu-11+7-NK cells responded at the maximum level and Leu-11-7+ cells responded moderately as shown by both cell-proliferation response and cytotoxic activity generated. On the other hand, Leu-11-7-T cells did not respond at all to rIL-2. However, when Leu-11-7-T cells were cultured with rIL-2 in a medium supplemented with 10% autologous serum, they showed considerable responsiveness to rIL-2. In addition, much greater response to Leu-11-7-T cells were produced by the addition of monocytes. Monocyte cytokines, neither IL 1, IFN-gamma, TNF, nor their combination were able to substitute for monocytes in the induction culture. In contrast, the response level of Leu-11+7- NK cells remained unchanged irrespective of supplementation with autologous serum to medium or the addition of monocytes to the culture. These results indicated that culture conditions in the experiments significantly affected the results as to determination of lymphokine-activated killer cell precursors, especially the result pertaining to the conversion of T lymphocytes to lymphokine-activated killer cells. Under appropriate conditions, not only NK cells but also T cells are important precursors of lymphokine-activated killer cells.  相似文献   

19.
We have examined the effect of chemically modulating intracellular glutathione (GSH) levels on murine lymphocyte activation. Lymphocyte activation was determined by the induction of polyamine synthesis (ornithine decarboxylase (ODC) induction) and DNA synthesis ([3H]thymidine([3H]Tdr) incorporation). Intracellular GSH levels were enhanced using L-2-oxothiazolidine-4-carboxylate (OTC), which delivers cysteine intracellularly, and suppressed by buthionine sulfoximine (BSO), which inhibits gamma-glutamylcysteine synthetase. In addition, the thiol 2-mercaptoethanol (2-ME) was tested for its ability to augment intracellular GSH levels. Our results indicate that both OTC and 2-ME enhance GSH concentrations and [3H]Tdr incorporation in resting and mitogen (concanavalin A)-stimulated cells. The induction of ODC by concanavalin A (Con A) was augmented by the addition of OTC or 2-ME. The GSH concentration of Con A-stimulated cells was reduced when compared to resting cells; however, it was markedly enhanced by OTC or 2-ME. The stimulatory effects of 2-ME on GSH concentrations, [3H]Tdr incorporation, and ODC induction in both resting and Con A-stimulated cells were much more potent than those of OTC. In contrast, BSO suppressed intracellular GSH and [3H]Tdr incorporation in resting and Con A-stimulated cells. BSO also inhibited the promotion of intracellular GSH concentrations and [3H]Tdr uptake by OTC or 2-ME. However, BSO did not affect the induction of ODC by Con A or its enhancement by OTC or 2-ME. We conclude that enhancement of intracellular GSH concentration results in an increased lymphocyte response to mitogen stimulation.  相似文献   

20.
The activation of human peripheral blood mononuclear cells (PBM) in culture leads to the generation of nonspecific killer cells. These cells, termed activated lymphocyte killer (ALK) cells, can kill fresh tumor cells and tumor cell lines, in addition to the natural killer (NK) cell sensitive target K562. ALK cells have features in common with both T and NK cells, but their nature and origin are unknown. In the present study, it is shown that ALK cells are in fact heterogeneous and can be generated from both large granular lymphocytes with the same phenotype as NK cells and from T cells. Cell populations enriched for NK cells, when cultured with lymphokines, rapidly acquired a T cell phenotype, enhanced cytolytic activity against K562, and the ability to lyse NK-insensitive target cells such as a melanoma cell line LiBr; these ALK cells were described as NK-like cells. On the other hand, of the cloned cells derived from PBM stimulated with irradiated B lymphoblasts and grown in lymphokines, the major proportion of cytolytic T cells (CTC) able to kill the specific stimulator lymphoblasts were also found to kill LiBr but not K562 cells. These ALK cells, which were derived from the same precursors as CTC, were designated anomalous killer (AK) cells. Consistent with this, the presence of the pan T monoclonal antibody UCHT1 from the beginning of mixed cell cultures inhibited the generation of CTC and of the AK-type of ALK cell, which killed melanoma cells, but not the NK type, which killed K562 targets. By contrast, at the effector cell level, the antibodies UCHT1 and OKT8 only blocked specific killing by CTC but did not block the killing of LiBr or of K562 targets by ALK cells. However, at the effector cell level there was additional evidence for the heterogeneity of ALK cells. Thus, monoclonal antibody 9.1C3, which blocks killing by freshly isolated NK cells, also blocked the killing of K562 targets by NK-like cells, but did not block B lymphoblast killing by CTC or melanoma cell killing by AK cells. It is concluded that after mixed lymphocyte culture, the majority of ALK cells measured by the killing of melanoma target cells arise from the same precursors and are under the same influences as classical CTC (AK cells), whereas cells killing K562 targets are derived from NK cells (NK-like cells). Once generated, the AK cells have a different mechanism of killing from both classical CTC and from NK and NK-like cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号