首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The mammalian target of rapamycin, mTOR, is a serine/threonine kinase that controls cell growth and proliferation via the translation regulators eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). We recently identified a TOR signaling (TOS) motif in the N terminus of S6K1 and the C terminus of 4E-BP1 and demonstrated that in S6K1, the TOS motif is necessary to facilitate mTOR signaling to phosphorylate and activate S6K1. However, it is unclear how the TOS motif in S6K1 and 4E-BP1 mediates mTOR signaling. RESULTS: Here, we show that a functional TOS motif is required for 4E-BP1 to bind to raptor (a recently identified mTOR-interacting protein), for 4E-BP1 to be efficiently phosphorylated in vitro by the mTOR/raptor complex, and for 4E-BP1 to be phosphorylated in vivo at all identified mTOR-regulated sites. mTOR/raptor-regulated phosphorylation is necessary for 4E-BP's efficient release from the translational initiation factor eIF4E. Consistently, overexpression of a mutant of 4E-BP1 containing a single amino acid change in the TOS motif (F114A) reduces cell size, demonstrating that mTOR-dependent regulation of cell growth by 4E-BP1 is dependent on a functional TOS motif. CONCLUSIONS: Our data demonstrate that the TOS motif functions as a docking site for the mTOR/raptor complex, which is required for multisite phosphorylation of 4E-BP1, eIF4E release from 4E-BP1, and cell growth.  相似文献   

2.
Eukaryotic elongation factor 2 (eEF2) kinase is an unusual calcium- and calmodulin-dependent protein kinase that is regulated by insulin through the rapamycin-sensitive mTOR pathway. Here we show that insulin decreases the ability of eEF2 kinase to bind calmodulin in a rapamycin-sensitive manner. We identify a novel phosphorylation site in eEF2 kinase (Ser78) that is located immediately next to its calmodulin-binding motif. Phosphorylation of this site is increased by insulin in a rapamycin-sensitive fashion. Regulation of the phosphorylation of Ser78 also requires amino acids and the protein kinase phosphoinositide-dependent kinase 1. Mutation of this site to alanine strongly attenuates the effects of insulin and rapamycin both on the binding of calmodulin to eEF2 kinase and on eEF2 kinase activity. Phosphorylation of Ser78 is thus likely to link insulin and mTOR signaling to the control of eEF2 phosphorylation and chain elongation. This site is not a target for known kinases in the mTOR pathway, e.g., the S6 kinases, implying that it is phosphorylated by a novel mTOR-linked protein kinase that serves to couple hormones and amino acids to the control of translation elongation. eEF2 kinase is thus a target for mTOR signaling independently of previously known downstream components of the pathway.  相似文献   

3.
The translational repressor protein eIF4E-binding protein 1 (4E-BP1, also termed PHAS-I) is regulated by phosphorylation through the rapamycin-sensitive mTOR (mammalian target of rapamycin) pathway. Recent studies have identified two regulatory motifs in 4E-BP1, an mTOR-signaling (TOS) motif in the C terminus of 4E-BP1 and an RAIP motif (named after its sequence) in the N terminus. Other recent work has shown that the protein raptor binds to mTOR and 4E-BP1. We show that raptor binds to full-length 4E-BP1 or a C-terminal fragment containing the TOS motif but not to an N-terminal fragment containing the RAIP motif. Mutation of several residues within the TOS motif abrogates binding to raptor, indicating that the TOS motif is required for this interaction. 4E-BP1 undergoes phosphorylation at multiple sites in intact cells. The effects of removal or mutation of the RAIP and TOS motifs differ. The RAIP motif is absolutely required for phosphorylation of sites in the N and C termini of 4E-BP1, whereas the TOS motif primarily affects phosphorylation of Ser-64/65, Thr-69/70, and also the rapamycin-insensitive site Ser-101. Phosphorylation of N-terminal sites that are dependent upon the RAIP motif is sensitive to rapamycin. The RAIP motif thus promotes the mTOR-dependent phosphorylation of multiple sites in 4E-BP1 independently of the 4E-BP1/raptor interaction.  相似文献   

4.
The proline-rich Akt substrate of 40 kilodaltons (PRAS40) was identified as a raptor-binding protein that is phosphorylated directly by mammalian target of rapamycin (mTOR) complex 1 (mTORC1) but not mTORC2 in vitro, predominantly at PRAS40 (Ser(183)). The binding of S6K1 and 4E-BP1 to raptor requires a TOR signaling (TOS) motif, which contains an essential Phe followed by four alternating acidic and small hydrophobic amino acids. PRAS40 binding to raptor was severely inhibited by mutation of PRAS40 (Phe(129) to Ala). Immediately carboxyl-terminal to Phe(129) are two small hydrophobic amino acid followed by two acidic residues. PRAS40 binding to raptor was also abolished by mutation of the major mTORC1 phosphorylation site, Ser(183), to Asp. PRAS40 (Ser(183)) was phosphorylated in intact cells; this phosphorylation was inhibited by rapamycin, by 2-deoxyglucose, and by overexpression of the tuberous sclerosis complex heterodimer. PRAS40 (Ser(183)) phosphorylation was also inhibited reversibly by withdrawal of all or of only the branched chain amino acids; this inhibition was reversed by overexpression of the Rheb GTPase. Overexpressed PRAS40 suppressed the phosphorylation of S6K1 and 4E-BP1 at their rapamycin-sensitive phosphorylation sites, and reciprocally, overexpression of S6K1 or 4E-BP1 suppressed phosphorylation of PRAS40 (Ser(183)) and its binding to raptor. RNA interference-induced depletion of PRAS40 enhanced the amino acid-stimulated phosphorylation of both S6K1 and 4E-BP1. These results establish PRAS40 as a physiological mTORC1 substrate that contains a variant TOS motif. Moreover, they indicate that the ability of raptor to bind endogenous substrates is limiting for the activity of mTORC1 in vivo and is therefore a potential locus of regulation.  相似文献   

5.
Signaling through the mammalian target of rapamycin (mTOR) controls cell size and growth as well as other functions, and it is a potential therapeutic target for graft rejection, certain cancers, and disorders characterized by inappropriate cell or tissue growth. mTOR signaling is positively regulated by hormones or growth factors and amino acids. mTOR signaling regulates the phosphorylation of several proteins, the best characterized being ones that control mRNA translation. Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) undergoes phosphorylation at multiple sites. Here we show that amino acids regulate the N-terminal phosphorylation sites in 4E-BP1 through the RAIP motif in a rapamycin-insensitive manner. Several criteria indicate this reflects a rapamycin-insensitive output from mTOR. In contrast, the insulin-stimulated phosphorylation of the C-terminal site Ser64/65 is generally sensitive to rapamycin, as is phosphorylation of another well-characterized target for mTOR signaling, S6K1. Our data imply that it is unlikely that mTOR directly phosphorylates Thr69/70 in 4E-BP1. Although 4E-BP1 and S6K1 bind the mTOR partner, raptor, our data indicate that the outputs from mTOR to 4E-BP1 and S6K1 are distinct. In cells, efficient phosphorylation of 4E-BP1 requires it to be able to bind to eIF4E, whereas phosphorylation of 4E-BP1 by mTOR in vitro shows no such preference. These data have important implications for understanding signaling downstream of mTOR and the development of new strategies to impair mTOR signaling.  相似文献   

6.
The mammalian target of rapamycin (mTOR) controls multiple cellular functions in response to amino acids and growth factors, in part by regulating the phosphorylation of p70 S6 kinase (p70S6k) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Raptor (regulatory associated protein of mTOR) is a recently identified mTOR binding partner that also binds p70S6k and 4E-BP1 and is essential for TOR signaling in vivo. Herein we demonstrate that raptor binds to p70S6k and 4E-BP1 through their respective TOS (conserved TOR signaling) motifs to be required for amino acid- and mTOR-dependent regulation of these mTOR substrates in vivo. A point mutation of the TOS motif also eliminates all in vitro mTOR-catalyzed 4E-BP1 phosphorylation and abolishes the raptor-dependent component of mTOR-catalyzed p70S6k phosphorylation in vitro. Raptor appears to serve as an mTOR scaffold protein, the binding of which to the TOS motif of mTOR substrates is necessary for effective mTOR-catalyzed phosphorylation in vivo and perhaps for conferring their sensitivity to rapamycin and amino acid sufficiency.  相似文献   

7.
8.
Oxidants are well recognized for their capacity to reduce the phosphorylation of the mammalian target of rapamycin (mTOR) substrates, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and p70 S6 kinase 1 (S6K1), thereby hindering mRNA translation at the level of initiation. mTOR functions to regulate mRNA translation by forming the signaling complex mTORC1 (mTOR, raptor, GβL). Insulin signaling to mTORC1 is dependent upon phosphorylation of Akt/PKB and the inhibition of the tuberous sclerosis complex (TSC1/2), thereby enhancing the phosphorylation of 4E-BP1 and S6K1. In this study we report the effect of H2O2 on insulin-stimulated mTORC1 activity and assembly using A549 and bovine aortic smooth muscle cells. We show that insulin stimulated the phosphorylation of TSC2 leading to a reduction in raptor–mTOR binding and in the quantity of proline-rich Akt substrate 40 (PRAS40) precipitating with mTOR. Insulin also increased 4E-BP1 coprecipitating with mTOR and the phosphorylation of the mTORC1 substrates 4E-BP1 and S6K1. H2O2, on the other hand, opposed the effects of insulin by increasing raptor–mTOR binding and the ratio of PRAS40/raptor derived from the mTOR immunoprecipitates in both cell types. These effects occurred in conjunction with a reduction in 4E-BP1 phosphorylation and the 4E-BP1/raptor ratio. siRNA-mediated knockdown of PRAS40 in A549 cells partially reversed the effect of H2O2 on 4E-BP1 phosphorylation but not on S6K1. These findings are consistent with PRAS40 functioning as a negative regulator of insulin-stimulated mTORC1 activity during oxidant stress.  相似文献   

9.
Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E.eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E.eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.  相似文献   

10.
BACKGROUND: The mammalian target of rapamycin (mTOR) controls the translation machinery via activation of S6 kinases 1 and 2 (S6K1/2) and inhibition of the eukaryotic initiation factor 4E (eIF4E) binding proteins 1, 2, and 3 (4E-BP1/2/3). S6K1 and 4E-BP1 are regulated by nutrient-sensing and mitogen-activated pathways. The molecular basis of mTOR regulation of S6K1 and 4E-BP1 remains controversial. RESULTS: We have identified a conserved TOR signaling (TOS) motif in the N terminus of all known S6 kinases and in the C terminus of the 4E-BPs that is crucial for phosphorylation and regulation S6K1 and 4E-BP1 activities. Deletion or mutations within the TOS motif significantly inhibit S6K1 activation and the phosphorylation of its hydrophobic motif, Thr389. In addition, this sequence is required to suppress an inhibitory activity mediated by the S6K1 C terminus. The TOS motif is essential for S6K1 activation by mTOR, as mutations in this motif mimic the effect of rapamycin on S6K1 phosphorylation, and render S6K1 insensitive to changes in amino acids. Furthermore, only overexpression of S6K1 with an intact TOS motif prevents 4E-BP1 phosphorylation by a common mTOR-regulated modulator of S6K1 and 4E-BP1. CONCLUSIONS: S6K1 and 4E-BP1 contain a conserved five amino acid sequence (TOS motif) that is crucial for their regulation by the mTOR pathway. mTOR seems to regulate S6K1 by two distinct mechanisms. The TOS motif appears to function as a docking site for either mTOR itself or a common upstream activator of S6K1 and 4E-BP1.  相似文献   

11.
The mammalian target of rapamycin (mTOR) kinase occurs in mTOR complex 1 (mTORC1) and complex 2 (mTORC2), primarily differing by the substrate specificity factors raptor (in mTORC1) and rictor (in mTORC2). Both complexes are activated during human cytomegalovirus (HCMV) infection. mTORC1 phosphorylates eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-BP1) and p70S6 kinase (S6K) in uninfected cells, and this activity is lost upon raptor depletion. In infected cells, 4E-BP1 and S6K phosphorylation is maintained when raptor or rictor is depleted, suggesting that either mTOR complex can phosphorylate 4E-BP1 and S6K. Studies using the mTOR inhibitor Torin1 show that phosphorylation of 4E-BP1 and S6K in infected cells depends on mTOR kinase. The total levels of 4E-BP1 and viral proteins representative of all temporal classes were lowered by Torin1 treatment and by raptor, but not rictor, depletion, suggesting that mTORC1 is involved in the production of all classes of HCMV proteins. We also show that Torin1 inhibition of mTOR kinase is rapid and most deleterious at early times of infection. While Torin1 treatment from the beginning of infection significantly inhibited translation of viral proteins, its addition at later time points had far less effect. Thus, with respect to mTOR's role in translational control, HCMV depends on it early in infection but can bypass it at later times of infection. Depletion of 4E-BP1 by use of short hairpin RNAs (shRNAs) did not rescue HCMV growth in Torin1-treated human fibroblasts as it has been shown to in murine cytomegalovirus (MCMV)-infected 4E-BP1(-/-) mouse embryo fibroblasts (MEFs), suggesting that during HCMV infection mTOR kinase has additional roles other than phosphorylating and inactivating 4E-BP1. Overall, our data suggest a dynamic relationship between HCMV and mTOR kinase which changes during the course of infection.  相似文献   

12.
Mammalian target of rapamycin (mTOR) functions in two distinct signaling complexes, mTORC1 and mTORC2. In response to insulin and nutrients, mTORC1, consisting of mTOR, raptor (regulatory-associated protein of mTOR), and mLST8, is activated and phosphorylates eukaryotic initiation factor 4E-binding protein (4EBP) and p70 S6 kinase to promote protein synthesis and cell size. Previously we found that activation of mTOR kinase in response to insulin was associated with increased 4EBP1 binding to raptor. Here we identify prolinerich Akt substrate 40 (PRAS40) as a binding partner for mTORC1. A putative TOR signaling motif, FVMDE, is identified in PRAS40 and shown to be required for interaction with raptor. Insulin stimulation markedly decreases the level of PRAS40 bound by mTORC1. Recombinant PRAS40 inhibits mTORC1 kinase activity in vivo and in vitro, and this inhibition depends on PRAS40 association with raptor. Furthermore, decreasing PRAS40 expression by short hairpin RNA enhances 4E-BP1 binding to raptor, and recombinant PRAS40 competes with 4E-BP1 binding to raptor. We, therefore, propose that PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding.  相似文献   

13.
Heat shock protein 90 (Hsp90) was co-immunoprecipitated with raptor, the binding partner of the mammalian target of rapamycin (mTOR) from HEK293 cells. Hsp90 was detected in the anti-raptor antibody immunoprecipitates prepared from the cell extract by immunoblot analysis using the anti-Hsp90 antibody, and the association of these two proteins was confirmed by immunoprecipitation from the cells co-expressing Hsp90 and raptor as epitope-tagged molecules. Geldanamycin, a potent inhibitor of Hsp90, disrupted the in vivo binding of Hsp90 to raptor without affecting the association of raptor and mTOR, and suppressed the phosphorylation by mTOR of the downstream translational regulators p70 S6 kinase (S6K) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). The protein kinase activity of S6K as well as the phosphorylation of the substrate, 40S ribosomal protein S6, were lowered in the geldanamycin-treated cells. These results indicate that Hsp90 is involved in the regulation of protein translation by facilitating the phosphorylation reaction of 4E-BP1 and S6K catalyzed by the mTOR/raptor complex through the association with raptor, and that the mTOR signaling pathway is a novel target of geldanamycin.  相似文献   

14.
Mammalian target of rapamycin complex 1 (mTORC1) phosphorylates proteins such as eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and the S6 kinases. These substrates contain short sequences, termed TOR signalling (TOS) motifs, which interact with the mTORC1 component raptor. Phosphorylation of 4E-BP1 requires an additional feature, termed the RAIP motif (Arg-Ala-Ile-Pro). We have analysed the interaction of 4E-BP1 with raptor and the amino acid residues required for functional RAIP and TOS motifs, as assessed by raptor binding and the phosphorylation of 4E-BP1 in human cells. Binding of 4E-BP1 to raptor strongly depends on an intact TOS motif, but the RAIP motif and additional C-terminal features of 4E-BP1 also contribute to this interaction. Mutational analysis of 4E-BP1 reveals that isoleucine is a key feature of the RAIP motif, that proline is also very important and that there is greater tolerance for substitution of the first two residues. Within the TOS motif, the first position (phenylalanine in the known motifs) is most critical, whereas a wider range of residues function in other positions (although an uncharged aliphatic residue is preferred at position three). These data provide important information on the structural requirements for efficient signalling downstream of mTORC1.  相似文献   

15.
《Cellular signalling》2014,26(10):2117-2121
Mammalian target of rapamycin (mTOR) controls cellular growth and proliferation by virtue of its ability to regulate protein translation. Eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) — a key mTOR substrate, binds and sequesters eIF4E to impede translation initiation that is supposedly overcome upon 4E-BP1 phosphorylation by mTOR. Ambiguity surrounding the precise identity of mTOR regulated sites in 4E-BP1 and their invariable resistance to mTOR inactivation raises concerns about phospho-regulated model proposed for 4E:4E-BP1 interaction. Our attempt to mimic dephosphorylation associated with rapamycin response by introducing phospho deficient mutants for sites implicated in regulating 4E:4E-BP1 interaction individually or globally highlighted no obvious difference in the quantum of their association with CAP bound 4E when compared with their phosphomimicked counterparts or the wild type 4E-BP1. TOS or RAIP motif deletion variants compromised for raptor binding and resultant phosphodeficiency did little to influence their association with CAP bound 4E. Interestingly ectopic expression of ribosomal protein S6 kinase 1 (S6K1) that restored 4E-BP1 sensitivity to rapamycin/Torin reflected by instant loss of 4E-BP1 phosphorylation, failed to bring about any obvious change in 4E:4E-BP1 stoichiometry. Our data clearly demonstrate a potential disconnect between rapamycin response of 4E-BP1 and its association with CAP bound 4E.  相似文献   

16.
The major function of mammalian target of rapamycin (mTOR) is the control of cell growth. Insulin and amino acids regulate the mTOR pathway, and both are needed to promote its maximal activation. To further understand mTOR regulation by insulin and amino acids, we have studied the enzyme in primary cultures of hepatocytes. We show that insulin increases mTOR phosphorylation on Ser2448, a consensus phosphorylation site for protein kinase B (PKB). Ser2448 phosphorylation is also increased by amino acids, although they do not activate PKB. Furthermore, insulin and amino acids have an additive effect, indicating that they act through distinct pathways. We also show that phosphorylation of Ser2448 does not seem to modulate in vitro phosphorylation of eukaryotic initiation factor 4E-binding protein 1 by mTOR. However, stimulation of hepatocytes with insulin and amino acids leads to an increase in mTOR kinase activity. Rapamycin has no effect on insulin-, glucagon-, and 8-(4-chlorophenylthio)adenosine-cAMP-induced amino acid transport. Surprisingly, glucagon and 8-(4-chlorophenylthio)adenosine-cAMP, which do not activate PKB, stimulate the phosphorylation on Ser2448 of mTOR. However, glucagon inhibits amino acid- and insulin-induced activation of ribosomal S6 protein kinase 1 and phosphorylation of the translational repressor eukaryotic initiation factor 4E-binding protein 1. Our results demonstrate that glucagon, which is not able to activate but rather inhibits the mTOR pathways, stimulates the phosphorylation of mTOR on Ser2448. This finding suggests that phosphorylation of this site might not be sufficient for mTOR kinase activity but is likely to be involved in other functions.  相似文献   

17.
We have examined the effects of widely used stress-inducing agents on protein synthesis and on regulatory components of the translational machinery. The three stresses chosen, arsenite, hydrogen peroxide and sorbitol, exert their effects in quite different ways. Nonetheless, all three rapidly ( approximately 30 min) caused a profound inhibition of protein synthesis. In each case this was accompanied by dephosphorylation of the eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) and increased binding of this repressor protein to eIF4E. Binding of 4E-BP1 to eIF4E correlated with loss of eIF4F complexes. Sorbitol and hydrogen peroxide each caused inhibition of the 70-kDa ribosomal protein S6 kinase, while arsenite activated it. The effects of stresses on the phosphorylation of eukaryotic elongation factor 2 also differed: oxidative stress elicited a marked increase in eEF2 phosphorylation, which is expected to contribute to inhibition of translation, while the other stresses did not have this effect. Although all three proteins (4E-BP1, p70 S6 kinase and eEF2) can be regulated through the mammalian target of rapamycin (mTOR), our data imply that stresses do not interfere with mTOR function but act in different ways on these three proteins. All three stresses activate the p38 MAP kinase pathway but we were able to exclude a role for this in their effects on 4E-BP1. Our data reveal that these stress-inducing agents, which are widely used to study stress-signalling in mammalian cells, exert multiple and complex inhibitory effects on the translational machinery.  相似文献   

18.
Regulation of protein translation through Akt and the downstream mammalian target of rapamycin (mTOR) pathway is an important component of the cellular response to hypertrophic stimuli. It has been proposed that 5'-AMP-activated protein kinase (AMPK) activation during muscle contraction may limit the hypertrophic response to resistance-type exercise by inhibiting translational signaling. However, experimental manipulation of AMPK activity during such a stimulus has not been attempted. Therefore, we investigated whether AMPK activation can attenuate the downstream signaling response of the Akt/mTOR pathway to electrically stimulated lengthening muscle contractions. Extensor digitorum longus muscles (n = 8/group) were subjected to a 22-min bout of lengthening contractions by high-frequency sciatic nerve electrical stimulation (STIM) in young adult (8 mo) Fischer 344 x Brown Norway male rats. Forty minutes before electrical stimulation, rats were subcutaneously injected with saline or 5-aminoimidazole-4-carboxamide-1-4-ribofuranoside (AICAR; 1 mg/g body wt), an AMPK activator. Stimulated and contralateral resting muscles were removed at 0, 20, and 40 min post-STIM, and AMPK, acetyl CoA carboxylase (ACC), Akt, eukaryotic initiation factor 4E-binding protein (4E-BP1), 70-kDa ribosomal protein S6 kinase (S6K1), and eukaryotic elongation factor 2 (eEF2) phosphorylations were assessed by Western blot. AICAR treatment increased (P < or = 0.05) post-STIM AMPK (Thr172) and ACC phosphorylation (Ser79/221), inhibited post-STIM S6K1 (Thr389) and 4E-BP1 (gel shift) phosphorylation, and elevated post-STIM eEF2 phosphorylation (Thr56). These findings suggest that translational signaling downstream of Akt/mTOR can be inhibited after lengthening contractions when preceded by AMPK activation and that energetic stress may be antagonistic to the hypertrophic translational signaling response to loaded muscle contractions.  相似文献   

19.
Insulin acutely activates protein synthesis in ventricular cardiomyocytes from adult rats. In this study, we have established the methodology for studying the regulation of the signaling pathways and translation factors that may be involved in this response and have examined the effects of acute insulin treatment on them. Insulin rapidly activated the 70-kDa ribosomal S6 kinase (p70 S6k), and this effect was inhibited both by rapamycin and by inhibitors of phosphatidylinositol 3-kinase. The activation of p70 S6k is mediated by a signaling pathway involving the mammalian target of rapamycin (mTOR), which also modulates other translation factors. These include the eukaryotic initiation factor (eIF) 4E binding proteins (4E-BPs) and eukaryotic elongation factor 2 (eEF2). Insulin caused phosphorylation of 4E-BP1 and induced its dissociation from eIF4E, and these effects were also blocked by rapamycin. Concomitant with this, insulin increased the binding of eIF4E to eIF4G. Insulin also activated protein kinase B (PKB), which may lie upstream of p70 S6k and 4E-BP1, with the activation of the different isoforms being in the order alpha>beta>gamma. Insulin also caused inhibition of glycogen synthase kinase 3, which lies downstream of PKB, and of eEF2 kinase. The phosphorylation of eEF2 itself was also decreased by insulin, and this effect and the inactivation of eEF2 kinase were attenuated by rapamycin. The activation of overall protein synthesis by insulin in cardiomyocytes was substantially inhibited by rapamycin (but not by inhibitors of other specific signaling pathways, e.g., mitogen-activated protein kinase), showing that signaling events linked to mTOR play a major role in the control of translation by insulin in this cell type.  相似文献   

20.
An important function of growth hormone (GH) is to promote cell and tissue growth, and a key component of these effects is the stimulation of protein synthesis. In this study, we demonstrate that, in H4IIE hepatoma cells, GH acutely activated protein synthesis through signaling via the mammalian target of rapamycin (mTOR) and specifically through the rapamycin-sensitive mTOR complex 1 (mTORC1). GH treatment enhanced the phosphorylation of two targets of mTOR signaling, 4E-BP1 and ribosomal protein S6. Phosphorylation of S6 and 4E-BP1 was maximal at 30-45 min and 10-20 min after GH stimulation, respectively. Both proteins modulate components of the translational machinery. The GH-induced phosphorylation of 4E-BP1 led to its dissociation from eIF4E and increased binding of eIF4E to eIF4G to form (active) eIF4F complexes. The ability of GH to stimulate the phosphorylation of S6 and 4E-BP1 was blocked by rapamycin. GH also led to the dephosphorylation of a third translational component linked to mTORC1, the elongation factor eEF2. Its regulation followed complex biphasic kinetics, both phases of which required mTOR signaling. GH rapidly activated both the MAP kinase (ERK) and PI 3-kinase pathways. Signaling through PI 3-kinase alone was, however, sufficient to activate the downstream mTORC1 pathway. Consistent with this, GH increased the phosphorylation of TSC2, an upstream regulator of mTORC1, at sites that are targets for Akt/PKB. Finally, the activation of overall protein synthesis by GH in H4IIE cells was essentially completely inhibited by wortmannin or rapamycin. These results demonstrate for the first time that mTORC1 plays a major role in the rapid activation of protein synthesis by GH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号