首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The genus Dipteronia Oliv. endemic to central and southern China consists of two species, Dipteronia sinensis Oliv. and Dipteronia dyeriana Henry, both of them are rare and endangered. AFLP markers were used to characterize the genetic diversity and geographical differentiation of the genus. Eight out of 32 PstI + 3/MseI + 3 selective primer combinations screened were applied to the analysis on 142 individuals of 17 D. sinensis and 4 D. dyeriana populations, respectively. A total of 324 fragments with 316 polymorphic were amplified. The proportion of polymorphic loci (PPB) was 97.53%. The Nei's gene diversity in D. sinensis and D. dyeriana was 0.3319 and 0.3047, respectively. About 43.6% (GST = 0.4356) of the genetic variation occurred among the populations, indicating a relatively high genetic differentiation among the populations. Cluster analysis grouped the 21 populations into two groups according to their species delimitation. The populations of D. sinensis were further divided into three subgroups corresponding to their geographical distributions. Correlation analysis revealed a significant correlation (p < 0.05) between geographical distance and genetic distance of these populations, suggesting that the relatively high genetic differentiation among the populations of D. sinensis might be caused by geographical isolation.  相似文献   

2.
Abstract

DNA sequence data have been widely used to evaluate species delimitations and examine infraspecific relationships. However, species placements inferred from different nucleotide sequences are frequently in conflict. As an example of plant species placement based on nucleotide sequences, the phylogenetic placement of Dipteronia dyerana Henry (Aceraceae) was analyzed in the present study. The study species included eight Acer species (from different sections of Acer), two Dipteronia species, and two outgroup taxa. Phylogenetic trees based on five datasets (ITS, trnL‐F, trnD‐trnT, psbM‐trnD, and rpl16 regions) as well as their combined datasets were generated by using maximum parsimony (MP) and maximum likelihood (ML) analyses. Further analyses were conducted to compare the strict consensus trees based on single regions and the combination of different regions. The results revealed a significant discrepancy among the phylogenetic placements of D. dyerana, inferred from various sequences. Phylogenetic trees using MP analysis based on trnD‐trnT, rpl16, and the four chloroplast combined sequences supported the genus Dipteronia as a monophyletic group, while in the other trees D. dyerana was positioned either in parallel with D. sinensis and Acer species or within the genus Acer. In ML analysis, only rpl16 and the four chloroplast combined sequence datasets supported the genus Dipteronia as a monophyletic group. We concluded that, although significant genetic differentiation occurred between D. dyerana and D. sinensis, D. dyerana was more advanced than D. sinensis. However, whether Dipteronia is monophyletic remains to be further investigated, e.g., by using more closely related taxa and more sequences. Furthermore, in addition to internal transcribed spacer sequences, more chloroplast gene sequences should be used for phylogenetic analyses of species.  相似文献   

3.
We analyzed nuclear and chloroplast microsatellite makers to assess genetic diversity and examine genetic structure of two mangrove tree species, Bruguiera gymnorrhiza and Kandelia obovata recovered from nine major river basins of Iriomote Island of the Ryukyu Archipelago, Japan. The average number of alleles per nuclear locus per population was 2.6 in B. gymnorrhiza and 1.7 in K. obovata. Bayesian clustering analysis using InStruct identified two genetic clusters in B. gymnorrhiza and three clusters in K. obovata. Chloroplast microsatellites revealed two dominant haplotypes from B. gymnorrhiza and three haplotypes from K. obovata. The overall result suggests low genetic diversity for both species. AMOVA for nuclear microsatellites showed 9.3?% of population variation in B. gymnorrhiza. Although genetic differentiation between several populations was significant in this species, F ST suggested low to moderate level of differentiations between most of the populations. Distribution of genetic clusters and chloroplast haplotypes also suggested weak differentiations among B. gymnorrhiza populations. In K. obovata, population variation was, however, relatively high (27.8?%). The high differentiation between K. obovata populations was also suggested from the F ST and genetic clusters from nuclear microsatellites, and chloroplast haplotypes. A significant correlation between chloroplast genetic distances and coastline distances as well as haplotype distributions for both species suggest that propagules from each species mostly disperse to the neighboring river basins. While significant F IS and higher percentage of admixed clusters from nuclear microsatellites suggested inbreeding, continual gene exchange by propagule dispersal among populations especially among neighboring populations was suggested for both species from maternally inherited chloroplast microsatellites analyses.  相似文献   

4.
For species that are habitat specialists or sedentary, population fragmentation may lead to genetic divergence between populations and reduced genetic diversity within populations, with frequent inbreeding. Hundreds of kilometres separate three geographical regions in which small populations of the endangered Eastern Bristlebird, Dasyornis brachypterus, a small, ground-dwelling passerine that occurs in fire-prone bushland in eastern Australia, are currently found. Here, we use mitochondrial and microsatellite DNA markers to: (i) assess the sub-specific taxonomy designated to northern range-edge, and central and southern range-edge D. brachypterus, respectively, and (ii) assess levels of standing genetic variation and the degree of genetic subdivision of remnant populations. The phylogenetic relationship among mtDNA haplotypes and their spatial distribution did not support the recognised subspecies boundaries. Populations in different regions were highly genetically differentiated, but in addition, the two largest, neighboring populations (located within the central region and separated by ~50 km) were moderately differentiated, and thus are likely closed to migration (microsatellites, F ST = 0.06; mtDNA, F ST = 0.12, ?? ST = 0.08). Birds within these two populations were genotypically diverse and apparently randomly mating. A long-term plan for the conservation of D. brachypterus??s genetic diversity should consider individual populations as separate management units. Moreover, managers should avoid actively mixing birds from different populations or regions, to conserve the genetic integrity of local populations and avoid outbreeding depression, should further translocations be used as a recovery tool for this species.  相似文献   

5.
Aim To characterize the genetic structure and diversity of Pinus cembra L. populations native to two disjunct geographical areas, the Alps and the Carpathians, and to evaluate the rate of genetic differentiation among populations. Location The Swiss Alps and the Carpathians. Methods We screened 28 populations at three paternally inherited chloroplast simple sequence repeats (cpSSRs) for length variation in their mononucleotide repeats. Statistical analysis assessed haplotypic variation and fixation indices. Hierarchical analysis of molecular variance (AMOVA), Mantel test, spatial analysis of molecular variance (SAMOVA) and barrier analyses were applied to evaluate the geographical partitioning of genetic diversity across the species’ range. Results Haplotypic diversity was generally high throughout the natural range of P. cembra, with the mean value substantially higher in the Carpathians (H = 0.53) than in the Alps (H = 0.35). The isolated Carpathian populations showed the highest haplotype diversity among the populations originating from the High Tatras (Velka Studena Dolina) and South Carpathians (Retezat Mountains). AMOVA revealed that only 3% of the total genetic variation derived from genetic differentiation between the two mountain ranges. Differentiation among Carpathian populations was higher (FST = 0.19) than among Alpine populations (FST = 0.04). Low, but significant, correlation was found between the geographical and genetic distances among pairs of populations (r = 0.286, P < 0.001). SAMOVA results revealed no evident geographical structure of populations. barrier analysis showed the strongest differentiation in the eastern part of the species’ range, i.e. in the Carpathians. Main conclusions The populations of P. cembra within the two parts of the species’ range still share many cpDNA haplotypes, suggesting a common gene pool conserved from a previously large, continuous distribution range. Carpathian populations have maintained high haplotypic variation, even higher than Alpine populations, despite their small population sizes and spatial isolation. Based on our results, we emphasize the importance of the Carpathian populations of Swiss stone pine for conservation. These populations comprise private haplotypes and they may represent a particular legacy of the species’ evolutionary history.  相似文献   

6.
We investigated genetic variation of 273 individuals from 25 populations of the monotypic species Hagenia abyssinica (Rosaceae) from the highlands of Ethiopia at three chloroplast microsatellite loci. The objectives were to infer the factors that shaped the genetic structure and to reconstruct the recolonization history of the species. Six haplotypes that were phylogenetically grouped into two lineages were identified. Homology of the three loci to the respective regions of the chloroplast genome was confirmed by sequencing. The chloroplast haplotypes found in Hagenia showed a clear pattern of congruence between their geographical distribution and genealogical relationships. A very low haplotype diversity within populations (h S = 0.079, v S = 0.058) and a very high population differentiation (G ST = 0.899, N ST = 0.926) was observed, reflecting very low mixing between recolonizing lineages. Restricted gene flow through seeds, rare long-distance dispersal, contiguous range expansion and mutation shaped the genetic structure of Hagenia. Fossil pollen records suggested that the trend of postglacial recolonization of Hagenia was first in the south and latter went to the north in Ethiopia.  相似文献   

7.
Genetic diversity and differentiation were analyzed in 11 populations of Magnolia stellata (Sieb. and Zucc.) Maxim. (Magnoliaceae) in the Tokai district, Japan. Variation at four nuclear microsatellite (nSSR) loci was examined, three chloroplast microsatellite (cpSSR) markers were developed and 13 haplotypes identified. The 11 populations were divided into three groups (A, B and C). Each population within the group was separated less than 40 km. Group B harbored the highest gene diversity (H) and allelic richness (Ar) for nSSR (H=0.74 and Ar=8.02). Group C had the highest diversity of chloroplast haplotypes (H=0.79 and Ar=6.8): 2.5 times more haplotypes than the other groups. Each population contributed differently to the total diversity, with respect to nSSR and cpSSR. AMOVA revealed that 58% of haplotypic and 15% of nSSR variation was partitioned among populations within groups. A Mantel test revealed significant correlations between population pairwise geographic ln(distance) and FST/(1−FST) for both nSSR (r=0.479; P=0.001) and cpSSR (r=0.230; P=0.040). Dendrograms of populations for nSSR, based on Nei’s genetic distance, were constructed using UPGMA and the neighbor-joining method. These results suggest that populations in group C have diverged from the other populations, while those in group B are similar to each other. For group B, fragmentation between populations should be avoided in order to maintain gene flow. For group C, the uniqueness of each population should be given the highest priority when planning genetic conservation measures for the species.  相似文献   

8.
Ophiocordyceps sinensis (Ascomycota: Ophiocordycipitaceae) is a native fungal parasite of Hepialidae caterpillars and one of the most economically important medicinal caterpillar fungi in China. However, little is known about the phylogenetic and evolutionary relationships between O. sinensis and its host insects. In this study, nuclear ITS and β-tubulin sequences from O. sinensis and mitochondrial COI, COII, and Cytb sequences from its hosts were analyzed across 33 populations sampled from five regions in China. Phylogenetically, both O. sinensis and its hosts were divided into three geographically correlated clades, and their phylogenies were congruent. Analysis of molecular variance and calculated coefficients of genetic differentiation revealed significant genetic divergence among the clades within both O. sinensis (FST= 0.878, NST=0.842) and its hosts (FST=0.861, NST=0.816). Estimated gene flow was very low for O. sinensis (Nm=0.04) and the host insects (Nm=0.04) among these three clades. Mantel tests demonstrated a significant correlation (P<0.01) between the genetic distances for O. sinensis and its hosts, as well as a significant association (P<0.05) between geographic and genetic distances in both. The similar phylogenetic relationships, geographic distributions, and genetic structure and differentiation between O. sinensis and its hosts imply that they have coevolved.  相似文献   

9.
Dipteronia is an endemic genus to China and includes only two species, Dipteronia sinensis and D. dyeriana. Based on random amplified polymorphic DNA (RAPD) markers, a comparative study of the genetic diversity and genetic structure of Dipteronia was performed. In total, 128 and 103 loci were detected in 17 D. sinensis populations and 4 D. dyeriana populations, respectively, using 18 random primers. These results showed that the proportions of polymorphic loci for the two species were 92.97% and 81.55%, respectively, indicating that the genetic diversity of D. sinensis was higher than that of D. dyeriana. Analysis, based on similarity coefficients, Shannon diversity index and Nei gene diversity index, also confirmed this result. AMOVA analysis demonstrated that the genetic variation of D. sinensis within and among populations accounted for 56.89% and 43.11% of the total variation, respectively, and that of D. dyeriana was 57.86% and 42.14%, respectively. The Shannon diversity index and Nei gene diversity index showed similar results. The abovementioned characteristics indicated that the genetic diversity levels of these two species were extremely similar and that the interpopulational genetic differentiation within both species was relatively high. Analysis of the genetic distance among populations also supported this conclusion. Low levels of interpopulational gene flow within both species were believed to be among the leading causes for the above-mentioned phenomenon. The correlation analysis between genetic and geographical distances showed the existence of a remarkably significant correlation between the genetic distance and the longitudinal difference among populations of D. sinensis (p < 0.01), while no significant correlation was found between genetic and geographical distances among populations of D. dyeriana. This indicated that genetic distance was correlated with geographical distances on a large scale rather than on a small scale. This result may be related to differences in the selection pressure on species by their habitats with different distribution ranges. We suggest that in situ conservation efforts should focus on establishing more sites to protect the natural populations and their habitats. Ex situ conservation efforts should focus on enhancing the exchange of seeds and seedlings among populations to facilitate gene exchange and recombination, and to help conserve genetic diversity. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(5): 785–792 [译自: 植物生态学报, 2005, 29(5): 785–792]  相似文献   

10.
Wang FY  Ge XJ  Gong X  Hu CM  Hao G 《Biochemical genetics》2008,46(1-2):75-87
The East Himalaya-Hengduan Mountains region is the center of diversity of the genus Primula, and P. sikkimensis is one of the most common members of the genus in the region. In this study, the genetic diversity and structure of P. sikkimensis populations in China were assessed using inter-simple sequence repeat (ISSR) and chloroplast microsatellite markers. The 254 individuals analyzed represented 13 populations. High levels of genetic diversity were revealed by ISSR markers. At the species level, the expected heterozygosity and Shannon’s index were 0.4032 and 0.5576, respectively. AMOVA analysis showed that 50.3% of the total genetic diversity was partitioned among populations. Three pairs of chloroplast microsatellite primers tested yielded a total of 12 size variants and 15 chloroplast haplotypes. Strong cpDNA genetic differentiation (G ST = 0.697) and evidence for phylogeographic structure were detected (N ST = 0.788, significantly higher than G ST). Estimated rates of pollen-mediated gene flow are approximately 27% greater than estimated rates of seed-mediated gene flow in P. sikkimensis. Both seed and pollen dispersal, however, are limited, and gene flow among populations appears to be hindered by the patchiness of the species’ habitats and their geographic isolation. These features may have played important roles in shaping the genetic structure of P. sikkimensis. A minimum-spanning tree of chloroplast DNA haplotypes was constructed, and possible glacial refugia of P. sikkimensis were identified.  相似文献   

11.

Background and Aims

Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia.

Methods

The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models.

Key Results

The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r2 = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline.

Conclusions

The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.  相似文献   

12.
Allozyme diversity and population genetic structure studies were conducted in populations of two Mexican cycad species occurring in adjacent and closely related biogeographic regions. We evaluated if rarity traits in Dioon caputoi, a micro-endemic species, and Dioon merolae, a regional endemic with a wider distribution, influence levels of genetic diversity in different ways. We also explored if genetic structure differs in these species, considering that they have similar population histories. Our results indicate that D. caputoi harbors lower levels of genetic diversity and allelic richness (H E = 0.358, P = 76.9, A r = 1.86) than D. merolae (H E = 0.446, P = 92.3, A r = 2). However, genetic structure does not differ between the two species despite their contrasting geographic distributions (F ST = 0.06 vs. 0.07; D. caputoi and D. merolae, respectively). The comparison of population genetic structure information with historical and geographical aspects of the populations suggests that the rarity of D. caputoi might be due to relatively recent local ecological factors.  相似文献   

13.
Beech is one of the most important trees in the temperate and subtropical forests of the Northern Hemisphere. Despite Chinese beeches have the particularity that only grow in subtropical areas, they have received few phylogeographic research. In this study, we sampled 25 populations of the northernmost-distributed Chinese beech, Fagus engleriana, and detected six haplotypes across 350 individuals by using sequences of two chloroplast intergenic spacers. The chloroplast genetic diversity was relatively low (h T?=?0.659), with most genetic variance residing among populations (G ST?=?0.831, N ST?=?0.855, G ST??N ST). SAMOVA analysis indicated that populations clustered into six groups with little admixture among them (most groups were characterized by a unique hapotype). Pairwise difference among haplotypes and Fu??s Fs statistic indicated that populations of F. engleriana have not experienced recent sudden expansions. Both the phylogeographic and demographic patterns found in this study suggest that F. engleriana remained fragmented in multiple refugia throughout the Pleistocene climatic changes, and experienced limited both glacial and interglacial/postglacial expansion. The results of this study imply that long-term isolation among multiple refugia, coupled with little admixture among populations of different refugia provided numerous opportunities for population divergence and allopatric speciation, which might be a driving factor for the exceptionally broad temperate species diversity in southern China.  相似文献   

14.
The fruit fly, Drosophila melanogaster, is a model species in evolutionary studies. However, population processes of this species in East Asia are poorly studied. Here we examined the population genetic structure of D. melanogaster across China. There were 14 mitochondrial haplotypes with 10 unique ones out of 23 known from around the globe. Pairwise FST values estimated from 15 novel microsatellites ranged from 0 to 0.11, with geographically isolated populations showing the highest level of genetic uniqueness. STRUCTURE analysis identified high levels of admixture at both the individual and population levels. Mantel tests indicated a strong association between genetic distance and geographical distance as well as environmental distance. Full redundancy analysis (RDA) showed that independent effects of environmental conditions and geography accounted for 62.10% and 31.58% of the total explained genetic variance, respectively. When geographic variables were constrained in a partial RDA analysis, the environmental variables bio2 (mean diurnal air temperature range), bio13 (precipitation of the wettest month), and bio15 (precipitation seasonality) were correlated with genetic distance. Our study suggests that demographic history, geographical isolation, and environmental factors have together shaped the population genetic structure of D. melanogaster after its introduction into China.Subject terms: Genetic variation, Population genetics  相似文献   

15.
Octopus minor (Sasaki, 1920) is a commercially important cephalopod in Chinese waters. To provide a theoretical basis for resource protection and sustainable management, we investigated genetic structure of ten O. minor populations in Chinese waters using microsatellite DNA markers. Eight microsatellite loci revealed high allelic diversity with 11–26 alleles per locus. Observed and expected heterozygosity varied from 0.412 to 0.900 and from 0.337 to 0.845, respectively. The overall FST value was 0.198, indicating great genetic differentiation among populations. The FST value between Yilan and other populations reached more than 0.3 that may be indicative of subspecies rank. Mantel test showed significant correlations between genetic and geographic distance (R = 0.383, P = 0.004) indicating that genetic differentiation of O. minor conformed to a pattern of isolation-by-distance. Using the Neighbor-joining method, cluster analysis divided nine populations into three groups and divided ten populations into two groups wherein Yilan was distinguished from the other populations. Analysis based on FST, Dc values and clustering highlighted the heterogeneity of Yilan and the relative homogeneity between Yilan and Ganyu. The significant population genetic structure of O. minor is related to the combined effects of geographical barriers, current features and life history characteristics.  相似文献   

16.

Background and Aims

Natural selection and genetic drift are important evolutionary forces in determining genetic and phenotypic differentiation in plant populations. The extent to which these two distinct evolutionary forces affect locally adaptive quantitative traits has been well studied in common plant and animal species. However, we know less about how quantitative traits respond to selection pressures and drift in endangered species that have small population sizes and fragmented distributions. To address this question, this study assessed the relative strengths of selection and genetic drift in shaping population differentiation of phenotypic traits in Psilopeganum sinense, a naturally rare and recently endangered plant species.

Methods

Population differentiation at five quantitative traits (QST) obtained from a common garden experiment was compared with differentiation at putatively neutral microsatellite markers (FST) in seven populations of P. sinense. QST estimates were derived using a Bayesian hierarchical variance component method.

Key Results

Trait-specific QST values were equal to or lower than FST. Neutral genetic diversity was not correlated with quantitative genetic variation within the populations of P. sinense.

Conclusions

Despite the prevalent empirical evidence for QST > FST, the results instead suggest a definitive role of stabilizing selection and drift leading to phenotypic differentiation among small populations. Three traits exhibited a significantly lower QST relative to FST, suggesting that populations of P. sinense might have experienced stabilizing selection for the same optimal phenotypes despite large geographical distances between populations and habitat fragmentation. For the other two traits, QST estimates were of the same magnitude as FST, indicating that divergence in these traits could have been achieved by genetic drift alone. The lack of correlation between molecular marker and quantitative genetic variation suggests that sophisticated considerations are required for the inference of conservation measures of P. sinense from neutral genetic markers.  相似文献   

17.
Identifying factors governing the origin, distribution, and maintenance of Neotropical plant diversity is an enduring challenge. To explore the complex and dynamic historical processes that shaped contemporary genetic patterns for a Central American plant species, we investigated the spatial distribution of chloroplast haplotypes of a geographically and environmentally widespread epiphytic bromeliad with wind‐dispersed seeds, Catopsis nutans, in Costa Rica. We hypothesized that genetic discontinuities occur between northwestern and southwestern Pacific slope populations, resembling patterns reported for other plant taxa in the region. Using non‐coding chloroplast DNA from 469 individuals and 23 populations, we assessed the influences of geographic and environmental distance as well as historical climatic variation on the genetic structure of populations spanning >1200 m in elevation. Catopsis nutans revealed seven haplotypes with low within‐population diversity (mean haplotype richness = 1.2) and moderate genetic structure (FST = 0.699). Pairwise FST was significantly correlated with both geographic and environmental distance. The frequency of dominant haplotypes was significantly correlated with elevation. A cluster of nine Pacific lowland populations exhibited a distinct haplotype profile and contained five of the seven haplotypes, suggesting historical isolation and limited seed‐mediated gene flow with other populations. Paleodistribution models indicated lowland and upland habitats in this region were contiguous through past climatic oscillations. Based on our paleodistribution analysis and comparable prior phylogeographic studies, the genetic signature of recent climatic oscillations are likely superimposed upon the distribution of anciently divergent lineages. Our study highlights the unique phylogeographic history of a Neotropical plant species spanning an elevation gradient.  相似文献   

18.
The Irrawaddy dolphin (Orcaella brevirostris) is an endangered, small cetacean species which is widely distributed in rivers, estuaries, and coastal waters throughout the tropical and subtropical Indo-Pacific. Despite the extensive distribution of this species, little is known of individual movements or genetic exchange among regions in Thailand. Here, we evaluate the genetic diversity and genetic structure of O. brevirostris in the eastern, northern and western Gulf of Thailand, and Andaman Sea. Although phylogenetic relationships and network analysis based on 15 haplotypes obtained from 32 individuals reveal no obvious divergence, significant genetic differentiation in mitochondrial DNA (overall FST = 0.226, P < 0.001; ΦST = 0.252, P < 0.001) is apparent among regions. Of 18 tested microsatellite loci, 10 are polymorphic and successfully characterized in 28 individuals, revealing significant genetic differentiation (overall FST = 0.077, P < 0.05) among the four sampling sites. Structure analysis reveals two inferred genetic clusters. Additionally, Mantel analysis demonstrates individual-by-individual genetic distances and geographic distances follow an isolation-by-distance model. We speculate that the significant genetic structure of O. brevirostris in Thailand is associated with a combination of geographical distribution patterns, environmental and anthropogenic factors, and local adaptations.  相似文献   

19.
This study presents a comprehensive genetic analysis of stock structure for leatherback turtles (Dermochelys coriacea), combining 17 microsatellite loci and 763 bp of the mtDNA control region. Recently discovered eastern Atlantic nesting populations of this critically endangered species were absent in a previous survey that found little ocean-wide mtDNA variation. We added rookeries in West Africa and Brazil and generated longer sequences for previously analyzed samples. A total of 1,417 individuals were sampled from nine nesting sites in the Atlantic and SW Indian Ocean. We detected additional mtDNA variation with the longer sequences, identifying ten polymorphic sites that resolved a total of ten haplotypes, including three new variants of haplotypes previously described by shorter sequences. Population differentiation was substantial between all but two adjacent rookery pairs, and F ST values ranged from 0.034 to 0.676 and 0.004 to 0.205 for mtDNA and microsatellite data respectively, suggesting that male-mediated gene flow is not as widespread as previously assumed. We detected weak (F ST = 0.008 and 0.006) but significant differentiation with microsatellites between the two population pairs that were indistinguishable with mtDNA data. POWSIM analysis showed that our mtDNA marker had very low statistical power to detect weak structure (F ST < 0.005), while our microsatellite marker array had high power. We conclude that the weak differentiation detected with microsatellites reflects a fine scale level of demographic independence that warrants recognition, and that all nine of the nesting colonies should be considered as demographically independent populations for conservation. Our findings illustrate the importance of evaluating the power of specific genetic markers to detect structure in order to correctly identify the appropriate population units to conserve.  相似文献   

20.
We examined the genetic diversity, population structure and gene flow in a dominant mangrove tree (Rhizophora stylosa) at its northern biogeographical limit in Sakishima islands of the Japanese archipelago. Simple sequence repeat (SSR) markers from chloroplast (cpSSR) and nuclear DNA were used to analyze 16 populations recovered from various river basins across the chain of three Sakishima islands—Iriomote, Ishigaki and Miyako. The average number of alleles (1.7–2.7) and observed heterozygosities (0.031–0.216) at nuclear SSR and haploid diversity (0.000–0.489) at cpSSR across the populations suggested low genetic diversity in R. stylosa in Sakishima islands. cpSSR analysis identified two haplotypes, and Bayesian clustering analysis (nuclear SSR) revealed two genetic clusters. Analysis of molecular variance (nuclear SSR) showed significant population differentiations. Pairwise tests consistently revealed significant differentiation between most of the population pairs; however, the degrees of differentiations are generally correspondent to the relative geographical distances as suggested from pairwise F ST and cpSSR genetic distances. Moreover, Mantel tests showed some signals of correlations between genetic distances (nuclear and chloroplast) and geographical distances. These results suggest that combined contribution of gene flow via pollen and propagule dispersal in R. stylosa mostly occurred between neighboring river basins. The appearances of two cpSSR haplotypes (maternal lineages) as well as two nuclear genetic clusters (putative ancestral lineages) at various river basins support the hypothesis that present-day R. stylosa populations across the Sakishima islands were established from few identical founders; however, significant differentiations among various river basins most likely resulted from the limited gene flow and high inbreeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号