首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We carried out a demographic study and evaluated the genetic and morphological variability in five populations of the endangered Sophronitis sincorana (Orchidaceae) endemic to Northeastern Brazil, based on allozyme and morphometric analyses. Plant density was approximately 0.5 plants/m2, and the projected total number of plants was approximately 50,000 individuals. However, fruit set and recruitment of individuals are rare. The genetic variability was very high in all populations (P = 100, A = 3.0−3.5, H e = 0.33−0.48), and all populations presented similar values of morphological variability. Low genetic and morphological structuring were found in the species (F ST = 0.053, AMRPP = 0.018). The elevated coefficient of endogamy encountered in populations of S. sincorana indicates the occurrence of structuring within the populations. The lack of correlation between morphological and genetic variation in this species indicates that none of the markers examined should be used separately for either conservation purposes.  相似文献   

2.
The Korean black scraper, Thamnaconus modestus, is one of the most economically important maricultural fish species in Korea. However, the annual catch of this fish has been continuously declining over the past several decades. In this study, the genetic diversity and relationships among four wild populations and two hatchery stocks of Korean black scraper were assessed based on 16 microsatellite (MS) markers. A total of 319 different alleles were detected over all loci with an average of 19.94 alleles per locus. The hatchery stocks [mean number of alleles (N A) = 12, allelic richness (A R) = 12, expected heterozygosity (He) = 0.834] showed a slight reduction (P > 0.05) in genetic variability in comparison with wild populations (mean N A = 13.86, A R = 12.35, He = 0.844), suggesting a sufficient level of genetic variation in the hatchery populations. Similarly low levels of inbreeding and significant Hardy–Weinberg equilibrium deviations were detected in both wild and hatchery populations. The genetic subdivision among all six populations was low but significant (overall F ST = 0.008, P < 0.01). Pairwise F ST, a phylogenetic tree, and multidimensional scaling analysis suggested the existence of three geographically structured populations based on different sea basin origins, although the isolation-by-distance model was rejected. This result was corroborated by an analysis of molecular variance. This genetic differentiation may result from the co-effects of various factors, such as historical dispersal, local environment and ocean currents. These three geographical groups can be considered as independent management units. Our results show that MS markers may be suitable not only for the genetic monitoring of hatchery stocks but also for revealing the population structure of Korean black scraper populations. These results will provide critical information for breeding programs, the management of cultured stocks and the conservation of this species.  相似文献   

3.
Allozyme diversity and population genetic structure studies were conducted in populations of two Mexican cycad species occurring in adjacent and closely related biogeographic regions. We evaluated if rarity traits in Dioon caputoi, a micro-endemic species, and Dioon merolae, a regional endemic with a wider distribution, influence levels of genetic diversity in different ways. We also explored if genetic structure differs in these species, considering that they have similar population histories. Our results indicate that D. caputoi harbors lower levels of genetic diversity and allelic richness (H E = 0.358, P = 76.9, A r = 1.86) than D. merolae (H E = 0.446, P = 92.3, A r = 2). However, genetic structure does not differ between the two species despite their contrasting geographic distributions (F ST = 0.06 vs. 0.07; D. caputoi and D. merolae, respectively). The comparison of population genetic structure information with historical and geographical aspects of the populations suggests that the rarity of D. caputoi might be due to relatively recent local ecological factors.  相似文献   

4.
Interspecific hybridization is cited as one potential mechanism for increased invasiveness, particularly among some grass species. In the southeastern United States, the successful invasion of cogongrass (Imperata cylindrica) has sometimes been attributed to hybridization with the previously naturalized Imperata brasiliensis. This research aimed to determine whether genetic signals are consistent with these two species having experienced interspecific hybridization in Florida (USA), where it has been proposed that such an event facilitated cogongrass invasion across the region. Individuals of invasive I. cylindrica populations (n = 66) were sampled broadly from the state, and I. brasiliensis (n = 63) individuals were sampled from expertly identified and vouchered populations in Miami-Dade County. Genetic analysis utilized amplified fragment length polymorphisms in sampled individuals, and failed to detect significant genetic differentiation between the two species. Analysis of molecular variance partitioned the majority of detected variation within populations (86 %), while only 8 % was significantly partitioned between I. cylindrica and I. brasiliensis (FST = 0.135, P < 0.001). Both STRUCTURE analysis and principal coordinates analysis strongly indicated the presence of a single genetic group across the sampled populations. Hybrid analysis furthermore failed to support interspecific hybridization. Florida populations thus are suggested to share genetic parent material(s) and/or have experienced substantial admixture across the state. Therefore, this study suggests Imperata populations in South Florida that are currently considered to be I. brasiliensis are not genetically distinct from I. cylindrica, and regional cogongrass invasion likely was not facilitated by previously postulated interspecific hybridization.  相似文献   

5.
Melampyrum sylvaticum is an endangered annual hemiparasitic plant that is found in only 19 small and isolated populations in the United Kingdom (UK). To evaluate the genetic consequences of this patchy distribution we compared levels of diversity, inbreeding and differentiation from ten populations from the UK with eight relatively large populations from Sweden and Norway where the species is more continuously distributed. We demonstrate that in both the UK and Scandinavia, the species is highly inbreeding (global F IS = 0.899). Levels of population differentiation were high (FST = 0.892) and significantly higher amongst UK populations (FST = 0.949) than Scandinavian populations (FST = 0.762; P < 0.01). The isolated populations in the UK have, on average, lower genetic diversity (allelic richness, proportion of loci that are polymorphic, gene diversity) than Scandinavian populations, and this diversity difference is associated with the smaller census size and population area of UK populations. From a conservation perspective, the naturally inbreeding nature of the species may buffer the species against immediate effects of inbreeding depression, but the markedly lower levels of genetic diversity in UK populations may represent a genetic constraint to evolutionary change. In addition, the high levels of population differentiation suggest that gene flow among populations will not be effective at replenishing lost variation. We thus recommend supporting in situ conservation management with ex situ populations and human-mediated seed dispersal among selected populations in the UK.  相似文献   

6.
Small or isolated populations are highly susceptible to stochastic events. They are prone and vulnerable to random demographic or environmental fluctuations that could lead to extinction due to the loss of alleles through genetic drift and increased inbreeding. We studied Ambystoma leorae an endemic and critically threatened species. We analyzed the genetic diversity and structure, effective population size, presence of bottlenecks and inbreeding coefficient of 96 individuals based on nine microsatellite loci. We found high levels of genetic diversity expressed as heterozygosity (Ho = 0.804, He = 0.613, He* = 0.626 and HNei = 0.622). The population presents few alleles (4–9 per locus) and genotypes (3–14 per locus) compared with other mole salamanders species. We identified three genetically differentiated subpopulations with a significant level of genetic structure (FST = 0.021, RST = 0.044 y Dest = 0.010, 95 % CI). We also detected a reduction signal in population size and evidence of a genetic bottleneck (M = 0.367). The effective population size is small (Ne = 45.2), but similar to another mole salamanders with restricted distributions or with recently fragmented habitat. The inbreeding coefficient levels detected are low (FIS = ?0.619–0.102) as is gene flow. Despite, high levels of genetic diversity A. leorae is critically endangered because it is a small isolated population.  相似文献   

7.
This study assessed the usefulness of geographic and pairwise genetic distances in the characterization of five sheep populations using 15 microsatellite markers. The average F statistics across loci were F IT = 0.523 ± 0.140, F ST = 0.363 ± 0.131, and F IS = 0.263 ± 0.092. The average heterozygosity was 0.716 ± 0.069, polymorphism information content was 0.691 ± 0.070, and effective number of alleles was 3.736 ± 0.998. Sheep populations clustered into group 1 (Hu and Tong breeds) and group 2 (small-tailed Han, Wadi, and Tan breeds). Reynolds’ distance varied from 0.0062 to 0.0499, and the range of gene flow (N m) was 4.8834–40.0726 among the sheep populations. The results showed that the genetic structure of the five populations was not consistent with their genetic distances, and the population genetic divergence was not linearly related to geographic distance as indicated by a Mantel test (P = 0.7936).  相似文献   

8.
Type of reproduction has an important effect on the maintenance of particular populations and species persistence in time and space. This trait significantly influences the ecological and genetic structure of populations, and in consequence the evolution of species. The primary objectives of this study were: to estimate genetic diversity within and among populations of clonal species Goodyera repens from different populations in northeastern Poland, and to amount factors shaping the genetic structure of this orchid. Based on 451 rosettes of G. repens from 11 localities in northeastern Poland, we conducted a genetic population analysis using allozymes. We included information on population size, flowering, fruit set and seed dispersal to elucidate their influences on genetic diversity of this species. Populations differed according to demographic properties. The majority of seeds (86.4–94.8 %) were found at a distance of 0.2 m. We observed a high level of genetic (P PL = 50 %, A = 1.68, H O = 0.210, H E = 0.204) and genotypic diversity (G = 163, G/N S = 0.66, G U = 30.2 %), and low but statistically significant genetic differentiation among populations (F ST = 0.060; P < 0.001). We suggest that the genetic diversity of G. repens is mainly an effect of the abundance of pine and spruce forest communities suitable for this species in NE Poland and the high level of sexual reproduction.  相似文献   

9.
Many terrestrial orchids are relatively rare, and their populations are small and spatially isolated. Population genetics theory predicts that populations of such species, affected historically by random genetic drift, would maintain low levels of genetic diversity and exhibit a high degree of among-population divergence. To test this prediction, I used enzyme electrophoresis. Genetic diversity within populations of the four rare, terrestrial orchids Gymnadenia cucullata (four populations) and its congener G. camtschatica (four populations), Amitostigma gracile (four populations in one region and three in another region), and Pogonia minor (three populations each in two regions) was investigated in South Korea at the landscape level. As predicted, populations of the four species harbor low levels of genetic diversity within populations: the mean percentage of polymorphic loci, %P, the mean number of alleles per locus, A, and the average expected heterozygosity, H e, were 12.5%, 1.13, and 0.036 for G. cucullata, respectively; 18.2%, 1.18, and 0.067 for G. camtschatica; 3.0%, 1.04, and 0.009 for A. gracile; and 2.7%, 1.06, and 0.014 for P. minor. Except for G. camtschatica (F ST = 0.000), a significantly high degree of genetic divergence between conspecific populations was detected in the other three species: F ST = 0.081 for G. cucullata; 0.348 and 0.811 in two regions for A. gracile; and 0.469 and 0.758 in two regions for P. minor. In addition, individuals within populations are highly structured in the four species (overall F IS = 0.276 for G. cucullata; 0.308 for G. camtschatica; 0.758 for A. gracile; and 0.469 for P. minor), suggesting that selfing, biparental inbreeding, and/or consanguineous mating have occurred in populations of the four species. With the exception of G. camtschatica, an allele at a locus is fixed in a population, whereas alternative alleles with low or high frequencies are detected in another population across the landscape. My results suggest that evolutionary histories of G. cucullata, A. gracile, and P. minor are different from G. camtschatica. Historical genetic drift would be an important force shaping the genetic structure of the Korean populations of G. cucullata, A. gracile, and P. minor. For G. camtschatica on Ulleung Island, relatively higher levels of genetic variation within populations compared to its congener G. cucullata (H e = 0.067 vs. 0.036) and little evidence of population genetic structure among populations (F ST = 0.000) suggest that individuals were, presumably, once continuously distributed on Ulleung Island, and populations have recently been isolated by habitat fragmentation through natural succession (e.g,. probably the encroachment of woody vegetation on grasslands) or human-mediated disturbances (e.g., collections). Thus, conservation strategies for the four species should be differently developed in order to preserve genetic diversity in South Korea.  相似文献   

10.
We studied the population genetic and clonal structure of the endangered long-lived perennial plant Narcissus pseudonarcissus using random amplified polymorphic markers. Estimates for mean gene diversity within 15 populations of N. pseudonarcissus of three neighbouring geographical regions were high in comparison to other long-lived perennials (H eN = 0.33). The genetic diversity of the two smallest populations (<200 plants) was significantly reduced, indicating loss of genetic variability due to drift. The analysis of the population genetic structure revealed a significant genetic differentiation both between regions (ΦST = 0.06) and between populations within regions (ΦST = 0.20). However, there was incomplete correspondence between geographical regions and the population genetic structure. In order to preserve the overall genetic variation in wild populations of N. pseudonarcissus, management measures should thus aim to protect many populations in each region. The spatial genetic structure within populations of N. pseudonarcissus was in agreement with an isolation by distance model indicating limited gene flow due to pollinator behaviour and restricted seed dispersal. The very restricted spatial extent of clonal growth (<5 cm) and the high level of clonal diversity indicate that clonal growth in N. pseudonarcissus is not an important mode of propagation and that management measures should favour sexual reproduction in order to avoid further reductions in the size and number of populations.  相似文献   

11.
Population genetics has been recognized as a key component of policy development for fisheries and conservation management. In this study, natural sea bass (Lateolabrax japonicus) populations in three ocean basins in Korea were assessed using multiplex assays with 12 highly polymorphic microsatellite loci; 203 alleles and similarly high levels of genetic diversity [mean number of alleles (NA) = 14.43, mean expected heterozygosity (He) = 0.84] were detected. All populations showed significant heterozygote deficiency at four loci, which could be explained by the presence of null alleles. The genetic population subdivision was low and was significantly different according to F-statistics (overall F ST = 0.003, R ST = 0.005). However, this substructure was not supported by an analysis of molecular variance test, analyses of isolation by distance or Bayesian analysis. The passive dispersal of eggs/larvae via the main currents appears to facilitate gene flow. The possibility of a recent genetic bottleneck was observed in all three populations of L. japonicus, indicating that overfishing and degradation of the environment in recent years has led to a decline in the sea bass populations in Korea. Our study demonstrates that sea bass in Korea do not appear to be genetically partitioned and should be managed as a single unit; however, the potential for a rapid loss of genetic diversity remains. Information regarding the genetic characteristics of Korean sea bass populations has important implications for fishery management and conservation efforts and will aid in the sustainable exploitation of fishing resources and the preservation of biodiversity.  相似文献   

12.
The burnet moth Zygaena anthyllidis, endemic to the high elevations of the Pyrenees, is vulnerable to land-use. In order to identify conservation priorities based on an assessment of genetic diversity within populations and gene flow among populations, we examined Z. anthyllidis’ genetic variability and differentiation based on allozyme electrophoresis from seven populations scattered across its entire range. In comparison to other mountain Lepidoptera, the populations studied exhibit a low level of genetic diversity. Remarkable between-population differentiation (F ST = 0.053), the presence of private alleles, and the lack of significant isolation-by-distance pattern characterises the genetic make-up of the species. We interpreted the pattern of genetic differentiation as a consequence of low dispersal power in combination with insufficient landscape connectivity. Ongoing land-use change might reinforce genetic differentiation due to habitat fragmentation and additionally affect negatively allozyme variability at shifting range margins, i.e. the capacity to adapt to changing environments. We therefore suggest creating a network of suitable habitats at the landscape scale to facilitate genetic exchange and to conserve the species’ overall genetic variability.  相似文献   

13.
We investigated the population genetics and fine-scale genetic structure of Rhizopogon roseolus. A total of 173 R. roseolus sporocarps were collected from two stands in the Tottori sand dune. We developed and applied five novel polymorphic microsatellite (SSR; simple sequence repeat) markers for sporocarp genotyping. In total, we identified 110 genets, most of which were small in size. Spatial autocorrelation analyses revealed a significantly positive genetic structure in short-distance classes. The inbreeding coefficient value was significant in both stands (FIS = 0.18), while the FST value (FST = 0.020) indicated little genetic differentiation between the two populations. The majority of alleles were distributed in both stands with similar frequencies. These results suggest that short-distance spore dispersal plays a dominant role in generating new genets, and eventually increases the frequency of inbreeding in the Tottori sand dune, whereas rare gene flow between the two stands, possibly associated with spore dispersal by mycophagous animals, could reduce genetic differentiation.  相似文献   

14.
We studied population size, genetic diversity and differentiation of common frog (Rana temporaria) populations at urban golf courses and reference natural ponds in the greater Helsinki region, southern Finland. A total of 248 tadpoles from 12 locations (six golf courses, six reference sites) were genotyped with 13 polymorphic microsatellite markers. The most urban populations, situated in northern Helsinki, were the largest breeding sites having >120 (golf courses) and >200 (reference sites) spawn clumps at the time of sampling. On average, there was no difference in the number of spawns between the anthropogenic ponds at golf courses and the natural water bodies. Genetic variation within populations was substantial (H O = 0.68) while genetic differentiation between populations was low (F ST = 0.016; average distance = 17.6 km). The golf course populations did not differ from natural populations in terms of genetic variability or differentiation. Hence, our results suggest that golf courses contribute positively to urban amphibian populations by providing suitable water bodies for reproduction and green corridors for dispersal, thus preventing isolation and loss of genetic variability within populations.  相似文献   

15.
Analyses of genetic variability and allelic composition in a species exhibiting reproductive fidelity to natal sites may provide important ecological indication of temporal population dynamics, facilitating understanding responses to past disturbances and future climate change. The walleye is an ecologically and economically valuable species, whose largest fishery centers in Lake Erie of the Laurentian Great Lakes; it exhibits reproductive site fidelity, despite otherwise wide-ranging dispersal. We tested whether genetic composition and diversity have remained temporally stable in Lake Erie’s Maumee River, which is the largest and most highly fished spawning run. This population has experienced over a century of exploitation, habitat alterations, and pollution, which may have affected genetic structure and might influence future sustainability. Fourteen nuclear DNA microsatellite loci were analyzed from 744 spawning run walleye to test genetic patterns across: (1) years (N = 12, spanning 1995–2013), (2) birth year cohorts, (3) the sexes, (4) those reproducing earlier (ages 2–6) versus later (7 or older) in life, and (5) the adults versus larvae. Results indicated stability in genetic diversity levels (mean H O = 0.76 ± 0.03) and allelic composition across years (F ST = 0.000–0.006, NS), cohorts (F ST = 0.000–0.013, NS), sexes (F ST = 0.000, NS), earlier versus later reproduction (F ST = 0.000, NS), and between the larvae and adults (F ST = 0.000–0.004, NS). Number of breeders and effective population size were substantial and consistent. This reproductive population thus has maintained genetic stability and high diversity, despite intensive anthropogenic pressures.  相似文献   

16.
For species that are habitat specialists or sedentary, population fragmentation may lead to genetic divergence between populations and reduced genetic diversity within populations, with frequent inbreeding. Hundreds of kilometres separate three geographical regions in which small populations of the endangered Eastern Bristlebird, Dasyornis brachypterus, a small, ground-dwelling passerine that occurs in fire-prone bushland in eastern Australia, are currently found. Here, we use mitochondrial and microsatellite DNA markers to: (i) assess the sub-specific taxonomy designated to northern range-edge, and central and southern range-edge D. brachypterus, respectively, and (ii) assess levels of standing genetic variation and the degree of genetic subdivision of remnant populations. The phylogenetic relationship among mtDNA haplotypes and their spatial distribution did not support the recognised subspecies boundaries. Populations in different regions were highly genetically differentiated, but in addition, the two largest, neighboring populations (located within the central region and separated by ~50 km) were moderately differentiated, and thus are likely closed to migration (microsatellites, F ST = 0.06; mtDNA, F ST = 0.12, ?? ST = 0.08). Birds within these two populations were genotypically diverse and apparently randomly mating. A long-term plan for the conservation of D. brachypterus??s genetic diversity should consider individual populations as separate management units. Moreover, managers should avoid actively mixing birds from different populations or regions, to conserve the genetic integrity of local populations and avoid outbreeding depression, should further translocations be used as a recovery tool for this species.  相似文献   

17.
The European black poplar (Populus nigra L.) is an ecologically and economically important tree species for Turkey. The important and major genetic resources of species for future breeding and ex situ conservation purposes have been archived in a clone bank in Ankara by selecting clones from natural populations and old plantations throughout Turkey. There is no study to date assessing genetic composition these materials. Two-hundred-thirty-three P. nigra clones from six geographic region of Turkey (clone collection populations), and 32 trees from two natural populations (Tunceli and Melet) were genotyped by using 12 nuclear microsatellite DNA markers. There were nine clones which duplicated in various frequencies. The analysis carried out with removal of the duplicated clones revealed a moderately high genetic diversity in studied populations. The observed heterozygosities ranged from 0.59 in Tunceli natural to 0.69 in Central Anatolia clone collection populations. In general, there was excess of heterozygosity in the studied populations. Populations composed of clone collections were significantly differentiated from natural populations (F ST = 0.17), while there was little differentiation among those populations in the clone collection (F ST = 0.03). Two distantly located natural populations with small sizes also differed from each other (F ST = 0.17). Genetic structure analysis revealed two distinct groups (clone collection vs natural populations) with very high membership values (>92%). Clone collection populations had high level of admixture while natural populations had homogenous genetic structure. The presence of large number of clonal duplication, reduced genetic differentiation, and high level of admixture in clone collection populations indicate that genetic resources of European black poplar were highly degraded through genetic erosion and pollution caused by intensive cultural practices and extensive dispersal of clonal materials. To understand genetic diversity and its structural pattern thoroughly in the six clone collection populations, a further study with extensive and systematic sampling of European black poplar populations in major river ecosystems in Turkey will be useful.  相似文献   

18.
Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.  相似文献   

19.
Gnaphalium teydeum and G. luteo-album (Asteraceae) are two closely congeneric taxa native to the Canary Islands. While G. luteo-album is widespread in the Macaronesian Region, G. teydeum is endemic to the island of Tenerife and considered endangered by IUCN. Using the RAPD technique this study investigated the level and apportionment of genetic diversity of these taxa, trying to solve a taxonomic dispute related to G. teydeum. Based on the 102 DNA fragments generated by 11 primers, a high level of genetic differentiation was found between the taxa (F ST  = 0.366), with G. luteo-album showing levels of genetic variability (P = 100%; H = 0.246) higher than those found in G. teydeum (P = 75.5%; H = 0.173). UPGMA dendrogram and Bayesian cluster analysis clearly separated populations from both the species. Overall, results show that although morphological differentiation between G. teydeum and G. luteo-album is not strong, they show marked molecular divergence, supporting the current taxonomic status.  相似文献   

20.
Gossypium mustelinum is a wild cotton relative found only in the semiarid region of Bahia state in Brazil, and changes caused by humans in the natural habitat of this species have endangered the existence of several natural populations. Information about the occurrence and genetic composition of these populations is necessary to design effective conservation measures. The aim of this study was to characterize the in situ maintenance mode and assess the genetic diversity of G. mustelinum populations in the basin of the De Contas River. A sample of 205 G. mustelinum specimens was collected from the margins of the Jacaré, Riacho Quixaba, Riacho Serra Azul, and Riacho Riachão rivers and genotyped using 13 SSR primer pairs. In general, all G. mustelinum populations exhibit inadequate in situ maintenance, predominantly due to the deforestation of riparian vegetation and herbivory. The observed total genetic diversity of G. mustelinum was significant (H E = 0.489), highly structured (F ST = 0.534), and organized in homozygous genotypes (F IS = 0.873). The high observed inbreeding level is consistent with the predominance of self-fertilization and geitonogamy (t m = 0.234). In addition, the pattern of genetic structure tended to form groups that coincided with the collection sites, i.e., first clustering within subpopulations, then within populations, and finally within the closest populations. Thus, the observed genetic diversity is likely to be rapidly lost, and conservation measures should therefore be undertaken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号