首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 5(') external transcribed spacer (ETS) region of ribosomal DNA of 30 species of Solanum sect. Petota and the European Solanum dulcamara were compared. Two structural elements can be distinguished in the ETS: (i). a variable region (VR), demonstrating significant structural rearrangements and (ii). a conservative region (CR), evolving mainly by base substitutions. In VR, a conservative element (CE) with similarity to the ETS of distantly related Nicotiana is present. The ancestral organization of ETS (variant A) was found for non-tuber-bearing species of ser. Etuberosa, tuber-bearing wild potatoes of Central American ser. Bulbocastana, Pinnatisecta, and Polyadenia and S. dulcamara. Duplication of CE took place in the ETS of species from ser. Commersoniana and Circaeifolia (variant B). South American diploids and Mexican polyploids from superser. Rotata also possess two CE, and additionally two duplications around CE1 are present in VR (variant C). Three major lineages could be distinguished: non-tuber-bearing species of ser. Etuberosa, tuber-bearing Central American diploids and all South American species radiated from a common ancestor at early stages of evolution, indicating a South American origin of the tuber-bearing species. Later, Central and South American diploids evolved further as independent lineages. South American species form a monophyletic group composed of series with both stellata and rotata flower morphology. Solanum commersonii represents a sister taxon for all rotata species, whereas ser. Circaeifolia diverged earlier. Two main groups, C1 and C2, may be distinguished for species possessing ETS variant C. C1 contains ser. Megistacroloba, Conicibaccata, Maglia, and Acaulia, whereas all diploids of ser. Tuberosa are combined into C2. A closer relationship of Solanum chacoense (ser. Yungasensa) to the C2 group was found. The origin of polyploid species Solanum maglia, Solanum acaule, Solanum tuberosum, Solanum iopetalum, and Solanum demissum is discussed.  相似文献   

2.
Solanum sect. Petota (tuber-bearing wild and cultivated potatoes) are a group of approximately 190 wild species distributed throughout the Americas from the southwestern United States south to Argentina, Chile, and Uruguay. Solanum series Conicibaccata are a group of approximately 40 species within sect. Petota, distributed from central Mexico to central Bolivia, composed of diploids (2n = 2x = 24), tetraploids (2n = 4x = 48) and hexaploids (2n = 6x = 64); the polyploids are thought to be polysomic polyploids. This study initially was designed to address species boundaries of the four Mexican and Central American species of series Conicibaccata with AFLP data with the addition of first germplasm collections of one of these four species, Solanum woodsonii, as a follow-up to prior morphological, chloroplast DNA, and RAPD studies; and additional species of series Conicibaccata from South America. AFLP data from 12 primer combinations (1722 polymorphic bands) are unable to distinguish polyploid species long thought to be distinct. The data suggest a complex reticulate history of the tetraploids or the need for a broad downward reevaluation of the number of species in series Conicibaccata, a trend seen in other series of sect. Petota. Separately, through flow cytometry, we report the first ploidy level of S. woodsonii, as tetraploid (2n = 48). The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

3.
Nucleotide sequences of 5S rRNA genes (5S rDNA) of 26 wild species of the genus Solanum (sect. Petota) originating from Middle or South America, four Solanum tuberosum breeding lines and one European species, Solanum dulcamara (sect. Dulcamara) were compared with each other and with the 5S rDNA of Lycopersicon esculentum. The length of the repeat ranges from 285 bp to 349 bp. The complete 5S repeat unit consists of the 120-bp long conserved coding region and of a intergenic spacer with a high variability in the central portion as result of deletions/duplications of short motifs demonstrating sequence similarity to box C in the 5S rRNA coding region. Numerous structural rearrangements found in the spacer region can be applied to design species-specific molecular markers for Solanum species involved in breeding programs. Characteristic insertions/deletions (indels) were used to reconstruct phylogenetic relationships among the species studied. S. dulcamara forms a separate clade; L. esculentum is more related to Solanum species of sect. Petota. Conservation of ancestral 5S spacer organization was demonstrated for the representatives of several series of sect. Petota, both Stellata and Rotata. Further rearrangements of the spacer organization occurred in at least four independent lineages: (1) L. esculentum, (2) ser. Polyadenia, (3) other Stellata species from Middle America (ser. Pinnatisecta and Bulbocastana), (4) superser. Rotata. In this last group, series Megistacroloba and Conocibaccata show a common origin, and separation from ser. Tuberosa. Solanum chacoense and Solanum maglia demonstrate a close relatedness to species of ser. Tuberosa and should be included into this group, whereas Solanum bukasovii should be excluded due to conservation of ancestral spacer organization. Three major subgroups may be distinguished for species from ser. Tuberosa, although a high sequence similarity was found here. Several wild species (diploids Solanum phureja and Solanum spegazzinii) probably participated in the natural origin of tetraploid S. tuberosum;others were later used for crossing in breeding programs (e.g. Solanum demissum). Clear separation of Middle-American Stellata species from South-American Stellata and from Middle-American Rotata polyploids is shown. Received: 11 January 2001 / Accepted: 18 April 2001  相似文献   

4.
Using the AFLP technique highly informative DNA fingerprints were generated from 19 taxa ofSolanum sect.Petota (potatoes) and three taxa ofSolanum sect.Lycopersicum (tomatoes). Both phenetic and cladistic analyses were conducted from the individual genotypic level to the species level. An AFLP fingerprint, using a combination of suitable AFLP primers, generated 12 to 71 scorable fragments per genotype which was sufficient for taxonomic interpretation. The classifications based on the molecular markers were generally in agreement with current taxonomic opinions. Unexpectedly,S. microdontum was associated with ser.Megistacroloba rather than with ser.Tuberosa, andS. demissum (ser.Demissa) and species of ser.Acaulia appeared closely affiliated. AFLP is an efficient and reliable technique to generate biosystematic data and therefore a promising tool for evolutionary studies.  相似文献   

5.

Background  

The secondary genepool of our modern cultivated potato (Solanum tuberosum L.) consists of a large number of tuber-bearing wild Solanum species under Solanum section Petota. One of the major taxonomic problems in section Petota is that the series classification (as put forward by Hawkes) is problematic and the boundaries of some series are unclear. In addition, the classification has received only partial cladistic support in all molecular studies carried out to date.  相似文献   

6.
Summary The occurrence of 2n pollen-producing plants was investigated in 187 plant introductions (PIs) of 38 wild species of tuber-bearing Solanum. These 2x, 4x, and 6x species are from Mexico, and Central and South America. The determination of 2n pollen-producing plants was conducted using acetocarmine glycerol. Plants with more than 1% large-size pollen were regarded as 2n pollen-producing plants. 2n pollen-producing plants were identified in the following species: 10 out of 12 Mexican 2x species, seven of nine South American 2x species, seven of seven Mexican and Central American 4x species, five of five South American 4x species, and five of five Mexican 6x species. The frequency of 2n pollen-producing plants varied among species at the same ploidy level, but the range of frequency, generally between 2 and 10% among species, was similar over different ploidy levels. The general occurrence of 2n pollen in both 2x and polyploid species, which are evolutionarily related, is evidence that the mode of polyploidization in tuber-bearing Solanums is sexual polyploidization. Furthermore, the frequencies of 2n pollen-producing plants in autogamous disomic polyploid species were not markably different from those of their related diploid species. It is thought that the frequent occurrence of 2n gametes with autogamy tends to disturb the fertility and consequently reduce fitness of polyploids. Thus, we propose that the breeding behavior of polyploids and the occurrence of 2n gametes may be genetically balanced in order to conserve high fitness in polyploid species in tuberbearing Solanum.Paper No. 3114 from the Laboratory of Genetics. Research supported by the College of Agriculture and Life Sciences; International Potato Center; USDA, SEA, CGRO 84-CRCR-1-1389; and Frito Lay, Inc.  相似文献   

7.
We used chloroplast DNA restriction site analysis to test hypotheses of relationships of Solarium subgenus Potatoe (including potatoes and pepinos), two other Solanum, Cyphomandra (the tree tomatoes), and Lycopersicon (the tomatoes). Capsicum and Datura were used as outgroups. The results support two main clades among the taxa we studied: 1) Solanum subgenus Potatoe and Lycopersicon; and 2) other Solanum and Cyphomandra. Within the first clade, the following groups were supported: a) sect. Basarthrum and sect. Anarrhichomenum; b) sect. Etuberosum; c) sect. Petota; d) sect. Juglandifolium, including subsect. Lycopersicoides; and e) the genus Lycopersicon. These results, in combination with an analysis of morphological data, advocate the controversial, but previously suggested, treatment of Lycopersicon as congeneric with Solanum in subgenus Potatoe. Thus, the cultivated tomato will be recognized as Solanum lycopersicum L. Solanum chmielewskii and Solanum lycopersicum var. cerasiforme are proposed as new combinations; Solanum neorickii is proposed as a new name for Lycopersicon parviflorum. Our data also suggest that Cyphomandra should be included within Solanum.  相似文献   

8.
Chloroplast DNA restriction site analysis has been used to test Hawkes's phylogenetic interpretations of the genomic data in Solanum sect. Petota. Hawkes hypothesized a diploid (2n = 24) origin of the tuber-bearing members of this group (subsection Potatoe) in Mexico and Central America (as a B genome) with later migrations and evolution to an A genome in South America, later followed by a return migration of the A genome to Mexico and Central America with A × B hybridizations and polyploidizations to produce ser. Longipedicellata (4x) and Demissa (6x). Our results provide partial support for this hypothesis by demonstrating the paraphyletic and primitive nature of the B genome species group, and the monophyletic and derived nature of all A genome and A × B genome species, including S. verrucosum, a hypothesized A genome progenitor of ser. Demissa. Thus, the Mexican and Central American polyploid species must have obtained their cytoplasm from the A genome. However, our results question the Stellata/Rotata hypothesis of Hawkes and the taxonomic placement of S. chomatophilum in ser. Conicibaccata.  相似文献   

9.
Solanum section Petota, containing the cultivated potato and its wild relatives, is a group of around 200 species. Many of these species are morphologically very variable with unclear boundaries, and the group as a whole appears to be somewhat over-classified. Describing a new species in this group should only be undertaken with caution, and molecular data can be used to test the distinctness of any putative new taxon. AFLP markers have shown the ability to reliably distinguish species in several groups within the genus Solanum. We tested the distinctness of a new tuber-bearing Solanum species using morphological and AFLP data, and tried to establish its affiliation to the series within the section. There was clear support for the species status of the material known as Solanum hannemanii in genebank collections, but the AFLP data were inconclusive about its relationships to the other investigated species. Also, the distinction of the series Tuberosa and Megistacroloba, to which these species belong, was not supported.  相似文献   

10.
Solanum section Petota, the potato and its wild relatives, includes about 200 wild species distributed from the southwestern United States to central Argentina and adjacent Chile, with about 30 species in North and Central America. The North/Central American region and the South American region all include diploids, tetraploids, and hexaploids. Chloroplast DNA restriction enzyme data from a prior study showed that 13 of the North/Central American species formed a clade containing only diploids, but there was low resolution within the clade. This Amplified Fragment Length Polymorphism (AFLP) study is conducted to provide additional resolution within the North/Central American diploids and complements the chloroplast results, and prior morphological results. Wagner parsimony and phenetic analyses mostly agreed with the morphological data in supporting currently recognized species except that they suggest that S. brachistotrichium and S. stenophyllidium are conspecific. Our new AFLP data, in combination with the cpDNA and morphological data, also support sister taxon relationships for the following diploid species from North and Central America: 1) S. cardiophyllum subsp. ehrenbergii and S. stenophyllidium, 2) S. tarnii and S. trifidum, 3) S. jamesii and S. pinnatisectum, 4) S. lesteri and S. polyadenium, and 5) S. clarum and S. morelliforme.This work represents partial fulfillment for the requirements of a Ph.D. degree in Plant Breeding and Genetics at the University of Wisconsin-Madison. We thank committee members Paul Berry, Michael Havey, Thomas Osborn, and Kenneth Sytsma. We also thank John Bamberg and Staff of the Unites States Potato Genebank for germplasm and locality data; Charles Nicolet and staff of the University of Wisconsin Biotechnology Center for technical help; Lynn Hummel and staff at Walnut Street Greenhouse for help in growing plants; and lab partners Brian Karas, Iris Peralta, Celeste Raker, and Sarah Stephenson for technical advice. This study was supported by CONACYT (Mexico) scholarship number 116742 granted to Sabina I. Lara-Cabrera, and the United States Department of Agriculture. Names are necessary to report data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

11.
The usefulness of features of leaf hairs in distinguishing subgenera and sections is well documented in bothRhododendron andSolanum. In this analysis of the taxa ofSolanum sect.Basarthrum (23 species), and of a sample of closely related taxa from sect.Petota (22 species), it is shown that such features serve to delineate subsectional groups such as series and some species as well. SectionBasarthrum has an unexpected diversity of hair types. Although this group has been characterized by 2-celled bayonet hairs, more than one half of the taxa in the section bear multicellular finger hairs, and 3 species also possess branched hairs. Thus, major rearrangements of the species previously assigned to sect.Basarthrum are indicated or supported by pubescence features. The taxa studied from seriesEtuberosa andJuglandifolia (both of sect.Petota) show hair types that a) are relatively primitive for the section, and b) show linkage between sects.Petota andBasarthrum.  相似文献   

12.
Chloroplast DNA (cpDNA) restriction enzyme site analysis was used to test hypotheses of series and superseries affiliations of 76 taxa, representing 11 of the 13 South American series (material unavailable for two series) of wild potatoes (Solanum sect. Petota) recognized in the latest classification by Hawkes. The cladistic results, combined with those from earlier cpDNA studies of 30 taxa of the Mexican and Central American species (representing eight series; ser. Conicibaccata and ser. Tuberosa have representatives in Mexico and in South America), support four main clades for 17 of the 19 series examined in sect. Petota: (1) the Mexican and Central American diploid species, exclusive of S. bulbocastanum, S. cardiophyllum, and S. verrucosum, (2) S. bulbocastanum and S. cardiophyllum (ser. Bulbocastana, ser. Pinnatisecta), (3) South American diploid species constituting all of ser. Piurana, but also members of ser. Conicibaccata, ser. Megistacroloba, ser. Tuberosa, and ser. Yungasensia, (4) all Mexican and Central American polyploid species (ser. Longipedicellata, ser. Demissa), S. verrucosum (diploid Mexican species in ser. Tuberosa), and South American diploid and polyploid members of ser. Acaulia, ser. Circaeifolia, ser. Commersoniana, ser. Conicibaccata, ser. Cuneoalata, ser. Lignicaulia, ser. Maglia, ser. Megistacroloba, ser. Tuberosa, and ser. Yungasensia. Each of these clades contains morphologically and reproductively very diverse species, and there are no evident morphological features that unite members within a clade to therefore distinguish them. These results strongly suggest a need for a reevaluation of the series and superseries classifications of sect. Petota.  相似文献   

13.

Premise of the Study

The species boundaries of wild and cultivated potatoes are controversial, with most of the taxonomic problems in the cultivated potato clade. We here provide the first in‐depth phylogenetic study of the cultivated potato clade to explore possible causes of these problems.

Methods

We examined 131 diploid accessions, using 12 nuclear orthologs, producing an aligned data set of 14,072 DNA characters, 2171 of which are parsimony‐informative. We analyzed the data to produce phylogenies and perform concordance analysis and goodness‐of‐fit tests.

Key Results

There is good phylogenetic structure in clades traditionally referred to as clade 1+2 (North and Central American diploid potatoes exclusive of Solanum verrucosum), clade 3, and a newly discovered basal clade, but drastically reduced phylogenetic structure in clade 4, the cultivated potato clade. The results highlight a clade of species in South America not shown before, ‘neocardenasii’, sister to clade 1+2, that possesses key morphological traits typical of diploids in Mexico and Central America. Goodness‐of‐fit tests suggest potential hybridization between some species of the cultivated potato clade. However, we do not have enough phylogenetic signal with the data at hand to explicitly estimate such hybridization events with species networks methods.

Conclusions

We document the close relationships of many of the species in the cultivated potato clade, provide insight into the cause of their taxonomic problems, and support the recent reduction of species in this clade. The discovery of the neocardenasii clade forces a reevaluation of a hypothesis that section Petota originated in Mexico and Central America.  相似文献   

14.
Insertions and deletions (indels) are common in intergenic spacer regions of plastid DNA and can provide important phylogenetic characters for closely related species. For example, a 241-bp plastid DNA deletion in the trnV-UAC/ndhC intergenic spacer region has been shown to have major phylogenetic importance in determining the origin of the cultivated potato. As part of a phylogenetic study of the wild potato Solanum series Piurana group we screened 199 accessions of 38 wild potato species in nine of the 19 tuber-bearing (Solanum section Petota) series that have not been examined before for indels in the trnV-UAC/ndhC intergenic spacer region. A novel 41 bp deletion (but no 241 bp deletion) was discovered for 30 accessions of three species: S. chiquidenum (5 of 10 accessions), S. chomatophilum (19 of 28), and S. jalcae (6 of 6). Accessions with and without this deletion are found throughout much of the north-south range of all three species in northern and central Peru, but not east of the Marañón River. Multivariate morphological analyses of these 44 accessions showed no morphological associations to the deletion. The results suggest extensive interspecific gene flow among these three species, or a common evolutionary history among species that have never been suggested to be interrelated.  相似文献   

15.
Dalea formosa consists of diploids (n = 7), tetraploids (n = 14), and hexaploids (n = 21), the polyploids restricted to the Chihuahuan Desert region or its immediate borders. There is very little morphological differentiation between the three chromosome races and, therefore, the polyploids are assumed to be primarily autoploid. Tetraploids discovered were few and were very similar to hexaploids; the two ploidy levels were combined as “polyploids” for analyses of geographically and cytologically correlated morphological variation. Pollen length generally was found to be greater in known polyploids than in known diploids. Through the use of pollen length and geographic origin, chromosomally unknown specimens were estimated as to ploidy level. This produced four groups, known diploids and polyploids, and putative diploids and polyploids, which were then subjected to stepwise discriminant analysis (SDA) to search for other morphological characters that might indicate ploidy level, to evaluate the assignments to putative ploidy level in unknown plants, and to assess correlation of these plants of putative ploidy level to geographic regions. SDA also indicated that pollen length, among ten morphological features, is the primary discriminator between ploidy levels, and that putative polyploids are confined primarily to the Chihuahuan Desert. Chromosomally unknown specimens that were originally assigned to one ploidy level, but were classified by SDA as another, are viewed as indicative of areas where further cytological sampling is particularly needed. These areas are southeastern Arizona, where pollen among known diploids is comparatively large, northeastern New Mexico, where polyploids might occur off the Chihuahuan Desert, east edge of the Chihuahuan Desert in Texas, a cytologically poorly sampled contact zone between diploids and polyploids, and central Coahuila, where no cytological sampling has been done. Canonical variate analysis is used to aid in the visualization of the general morphological relationship between diploids and polyploids.  相似文献   

16.
Reactions to two subgroup I isolates (Fny-CMV and Pf-CMV) and two subgroup II isolates (A9-CMV and LS-CMV) of cucumber mosaic virus (CMV) were studied in three non tuber-bearing wild potato species (Solanum spp.) of the series Etuberosa, and in two tuber-bearing interspecific potato hybrids and four potato cultivars using graft-inoculation. Three classes of phenotypic reactions (susceptible, hypersensitive, extreme resistance) were observed in the tuber-bearing genotypes. Susceptible genotypes developed mosaic or severe mosaic with leaf malformation and had high CMV titres. Hypersensitive genotypes developed either top necrosis or vein necrosis and/or necrotic spots on apical leaves, and had low CMV titres. Extremely resistant genotypes had no symptoms and no CMV was detected. The hybrid 87HW13.7 (S. tuberosum×S. multidissectum) developed top necrosis specific to infection with Fny-CMV. The hybrid ‘A6’ (S. demissum×S. tuberosum cv. Aquila) was hypersensitive to all CMV isolates tested. Extreme resistance was not functional against all CMV isolates. Neither hypersensitivity nor extreme resistance were related to the CMV subgroup.  相似文献   

17.
Agroinfiltration and PVX agroinfection are two efficient transient expression assays for functional analysis of candidate genes in plants. The most commonly used agent for agroinfiltration is Agrobacterium tumefaciens, a pathogen of many dicot plant species. This implies that agroinfiltration can be applied to many plant species. Here, we present our protocols and expected results when applying these methods to the potato (Solanum tuberosum), its related wild tuber-bearing Solanum species (Solanum section Petota) and the model plant Nicotiana benthamiana. In addition to functional analysis of single genes, such as resistance (R) or avirulence (Avr) genes, the agroinfiltration assay is very suitable for recapitulating the R-AVR interactions associated with specific host pathogen interactions by simply delivering R and Avr transgenes into the same cell. However, some plant genotypes can raise nonspecific defense responses to Agrobacterium, as we observed for example for several potato genotypes. Compared to agroinfiltration, detection of AVR activity with PVX agroinfection is more sensitive, more high-throughput in functional screens and less sensitive to nonspecific defense responses to Agrobacterium. However, nonspecific defense to PVX can occur and there is a risk to miss responses due to virus-induced extreme resistance. Despite such limitations, in our experience, agroinfiltration and PVX agroinfection are both suitable and complementary assays that can be used simultaneously to confirm each other''s results.  相似文献   

18.
Plant acid invertases are considered to be the key enzymes in sucrose unloading and carbohydrate supply to sink tissues. Acid cell-wall invertases control sucrose transport via the apoplastic pathway during sink initiation and expansion. In this study, we identified 12 LIN7 gene homologs encoding cell-wall invertases in red- and green-fruited tomato accessions (Solanum section Lycopersicon) of self-compatible and self-incompatible species. All genes consisted of six exons and five introns, including highly conserved 9-bp exon II. Identification of 226 exonic single nucleotide polymorphisms as well as extremely high intron variability indicates a significant interspecific divergence among the examined tomato accessions. Computational prediction revealed protein structure typical for the glycosyl hydrolase family 32 and conserved catalytic sites described for other plant cell-wall invertases. LIN7 expression in mature buds and flowers confirms LIN7 role in the development of pollen tubes and grains. The variability in gene and protein sequences and species-specific differences in LIN7 expression patterns may be responsible for putative functional divergence of invertases. Furthermore, we performed phylogenetic analysis of the Solanum section Lycopersicon species based on the LIN7 gene, which clearly divided the analyzed tomato accessions into two main clusters corresponding to self-compatible and self-incompatible species and was in agreement with the separation into red- and green-fruited plants. Given that LIN7 plays an essential role in tomato fertility and fruit ripening, the characterization of protein variability within species of section Lycopersicon may be useful to evaluate the potential application of the encoding genes for tomato breeding programs.  相似文献   

19.
Black nightshades are a group of species best known for their ‘poisonous’ or noxious weedy reputation. It is not so well known that species of this group serve as emerging food source in many countries worldwide especially in the African continent. Despite the fact that the section has recently been studied extensively, taxonomy is still unsettled and debated because of inter- and intraspecific hybridization, phenotypic plasticity and polyploidization. In this study we analyze the genetic relationships among diploid, tetraploid and hexaploid species of sect. Solanum, which have possibly taken part in the formation of Solanum nigrum, utilizing multi-locus (SCoT, ISSR) markers combined with chloroplast trnL-F sequence data and morphological characters. We scored 51 morphological characters united with SCoT (171), ISSR (224) and trnL-F (1042), for simultaneous analysis of 49 terminals and 1488 characters. The topology of the tree is concordant with the results of the network analysis. In the phylogenetic networks, all the accessions of the diploid species shared a split with all of the polyploid species. This reflected a high portion of shared ISSR and SCoT bands between diploids and polyploids. In addition, a strong split divided the diploid species. The history of S. nigrum might be reticulate with hybrid speciation playing an important rule. Genetically differentiated diploids in few combinations have created a series of genetically distinct polyploid populations. The insufficient isolation that permitted further recombination between ancient polyploids and diploids have resulted in high level of genotypic and phenotypic polymorphism. This high level of novel genomic variability obviously enabled species to succeed in their new environment.  相似文献   

20.
Somatic hybrid plants were regenerated from fused mesophyll protoplasts of an albino potato (Solanum tuberosum spp. tuberosum) variant and Solanum brevidens, a non-tuber bearing species which is sexually incompatible with S. tuberosum. These somatic hybrid plants represent the first example of direct hybridization between potato and members of the taxonomic group Etuberosa, and offer the potential for introgressing valuable germplasm from Solanum species outside the sexually compatible range into a worldwide crop species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号