首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some plant species can cross with each other but stay nevertheless distinct with little gene flow between them. Selective herbivory could explain this pattern when hybrids are more susceptible or intermediate between their parents. We performed choice and no-choice experiments with the slug Arion lusitanicus to test this hypothesis for the crop Brassica napus, wild B. rapa and their backcross hybrids. In both experiments slugs greatly preferred B. napus over B. rapa while average herbivory on backcross hybrids was intermediate. Concentrations of aliphatic glucosinolates in the hybrids were intermediate between the parental species. Slug herbivory potentially reduces establishment of backcross hybrids. This hypothesis needs to be tested in the field.  相似文献   

2.
Evolutionary theory and observation predict wider phenotypic variation in hybrids than parental species. Emergent phenotypic novelty in hybrids may in turn drive new adaptations or speciation by breaking parental phenotypic constraints. Primate hybridization is often documented through genetic evidence, but knowledge about the primate hybrid phenotype remains limited due to a small number of available studies on hybrid primate morphology. Here, we examine pelage and morphometric variation in two Brazilian marmoset species (Callithrix penicillata and C. geoffroyi) and their hybrids. Hybrids were sampled in an anthropogenic hybrid zone in the municipality of Viçosa, Minas Gerais state, Brazil. We analyzed hybrid facial and body pelage color variation, and compared 13 morphometric measures between hybrids and parental species. Five different hybrid facial morphotypes were observed, varying from intermediate to parental-like. Hybrid facial morphotypes were biased towards C. penicillata, suggesting that the pelage of this species may be dominant to that of C. geoffroyi in this context, and indicating that mate preference, and therefore gene flow/introgression, may be biased towards C. penicillata within the hybrid zone. Hybrid morphometric features were on average intermediate to parental species traits, but transgressive hybrids were also observed, suggesting that morphometric variation for the studied traits is consistent with Rieseberg’s complementary allele model. Finally, we observed a decoupling of facial patterning and size/shape in hybrids, relative to parent phenotypes, suggesting that an important factor driving phenotypic novelty within the Viçosa marmoset hybrid zone might be the loosening of evolutionary constraints on phenotypic trait integration.  相似文献   

3.
Hybrids between the C4-like species, Flaveria brownii, A. M. Powell and the C3-C4 intermediate species Flaveria linearis Lag., Flaveria floridana Johnston, and Flaveria oppositifolia (DC.) Rydb. exhibited bivalent chromosome pairing during meiosis and stainability of pollen was high, ranging from 51 to 95%. An F2 population produced from an F. brownii × F. linearis F1 hybrid, exhibited bivalent chromosome pairing and high pollen stainability indicating a high degree of fertility in the hybrid. Oxygen inhibition of apparent photosynthesis averaged 6.8% for F. brownii and 22.2% for the C3-C4 species (in two experiments), and F1 hybrids exhibited inhibitions which were intermediate to their parents. Values of carbon dioxide compensation concentration determined at low irradiance were 4.0, 34.0, and 6.5 microliters per liter for F. brownii, F. linearis and their F1 hybrid, respectively. The mean value at low irradiance for 33 F1 plants was 6.8 microliters per liter, and individual values ranged only from 3.7 to 11.7 microliters per liter. Anatomical characteristics for the F1 hybrid leaves were intermediate to those of the parents, and there was considerable variation among F2 plants derived from F. brownii × F. linearis. In the F2 population δ13C values ranged from −27‰ to −20‰. The expression of more C4-like characteristics by the F1 hybrids in this study and their apparent high fertility make them promising specimens for producing segregating populations for use in C4 inheritance studies.  相似文献   

4.
The large subunits of mitochondrial ribosomes were isolated from two related frog species, Xenopus laevis and X. mulleri, and their proteins were compared by two-dimensional polyacrylamide gel electrophoresis. Three of the proteins observed in X. laevis are absent from X. mulleri, and four of the proteins observed in X. mulleri are absent from X. laevis. More than these seven such species-specific proteins may occur.Reciprocal crosses between frogs of the two species gave two groups of F1 hybrids. Nuclear genes in these hybrids derive equally from both species, while mitochondrial DNA (and therefore mitochondrial rRNA) derived exclusively from the maternal species. Electrophoretic analyses of the large subunit proteins of these F1 animals revealed that four of the species-specific proteins are present only when their corresponding species was the mother. While this result is consistent with the coding of these four proteins by mitochondrial DNA, it does not provide evidence against nuclear coding of these proteins. A fifth protein is absent from both F1 hybrids. A sixth is present in both F1 hybrids, and a seventh is present only when its corresponding species was the father. We conclude that at least these latter two mitochondrial ribosomal proteins are encoded by nuclear genes.  相似文献   

5.
Ecological speciation is a process by which reproductive isolation evolves as the result of divergent natural selection between populations inhabiting distinct environments or exploiting alternative resources. Ecological hybrid inviability provides direct evidence for ecological speciation. To detect ecological hybrid inviability, we examined survival rates to the second instar of F1 hybrids and backcross hybrids in a pair of sympatric phytophagous ladybird beetles, Henosepilachna niponica Lewis and Henosepilachna yasutomii Katakura (Coleoptera: Coccinellidae: Epilachninae), reared on their respective host plants, thistle [Cirsium alpicola Nakai (Asteraceae)] and blue cohosh [Caulophyllum robustum Maxim. (Berberidaceae)], and on a common food plant, Japanese nightshade [Solanum japonense Nakai (Solanaceae)]. Hybrid larvae reared on leaves of the Japanese nightshade always had high rates of survival, irrespective of the crossing type of their parents, suggesting a lack of intrinsic hybrid inviability between the two species. In contrast, survival rates on thistle and blue cohosh varied greatly. On blue cohosh, the survival rate of F1 hybrids was nearly as high as that of H. yasutomii, but on thistle, survival was significantly lower than of H. niponica. Survival rates of backcross hybrids on the two host plants were intermediate between those of the parents, showing a reversed rank order of different types of backcross hybrids on the two food plant species. These results suggest that ecological hybrid inviability exists between H. niponica and H. yasutomii, although the two species do not show intrinsic hybrid inviability. Thus, our study supports the hypothesis that H. niponica and H. yasutomii underwent ecological speciation by divergent selection.  相似文献   

6.
Intra-specific hybrids within Eucalyptus nitens and E. globulus were compared directly with inter-specific E. nitens × globulus using common parents. Diameter (age 2, 4, 6, 10 years) and Pilodyn (age 6 years) were used as indirect measures of growth and wood density, respectively. Genetic parameters were estimated for all cross types and traits. A direct comparison of the general combining ability with the general hybridising ability was made. Heterosis was estimated for intra- and inter-specific hybrids. The intra-specific hybrids in both species exhibit intermediate heritabilities and levels of additive genetic variance. The inter-specific F1 E. nitens × globulus exhibited high incidence of abnormalities at young ages and high levels of later age mortality. The mean performance of surviving inter-specific F1 hybrids was generally intermediate for all traits, to varying degrees, between the parental intra-specific crosses, and there is little evidence for significant heterosis. Different provenances of E. globulus may exhibit different responses to hybridisation. In this case, the inter-specific F1 hybrids, using Taranna E. globulus, appear to perform worse on average than those using King Island provenance for growth traits. There is evidence that specific hybrid families are produced that outperform most of the pure species families for one or other of the traits examined; however, there is no reliable quantitative genetic method of predicting which parents should be used.  相似文献   

7.
We investigated the anatomical expression of leaf traits in hybrids between evergreen Vaccinium vitis‐idaea and deciduous V. myrtillus. We compared parents from four populations with their respective F1 hybrids and tested whether (i) transgression can be the source of novel anatomical traits in hybrids; (ii) expression of transgressive traits is more probable for traits with similar values in parents and intermediate for more distinct values, as predicted by theory; and (iii) independent origin of hybrids leads to identical trait expression profiles among populations. We found that anatomical leaf traits can be divided into four categories based on their similarity to parents: intermediate, parental‐like, transgressive and non‐significant. Contrary to the common view, parental‐like trait values were equally important in shaping the hybrid profile, as were intermediate traits. Transgression was revealed in 17/144 cases and concerned mainly cell and tissue sizes. As predicted by theory, we observed transgressive segregation more often when there was little phenotypic divergence, but intermediate values when parental traits were differentiated. It is likely that cell and tissue sizes are phylogenetically more conserved due to stabilising selection, whereas traits such as leaf thickness and volume fraction of the intercellular spaces, showing a consistent intermediate pattern across populations, are more susceptible to directional selection. Hybrid populations showed little similarity in expression profile, with only three traits identically expressed across all populations. Thus local adaptation of parental species and specific genetic background may be of importance.  相似文献   

8.
The hybrid zone on Mount Etna (Sicily) between Senecio aethnensis and Senecio chrysanthemifolius (two morphologically and physiologically distinct species) is a classic example of an altitudinal cline. Hybridization at intermediate altitudes and gradients in phenotypic and life‐history traits occur along altitudinal transects of the volcano. The cline is considered to be a good example of ecological selection with species differences arising by divergent selection opposing gene flow. However, the possibility that the cline formed from recent secondary contact following an allopatric phase is difficult to exclude. We demonstrate a recent split between S. aethnensis and S. chrysanthemifolius (as recent as ~32,000 years ago) and sufficient gene flow (2Nm > 1) to have prevented divergence (implicating a role for diversifying selection in the maintenance of the cline). Differentially expressed genes between S. aethnensis and S. chrysanthemifolius exhibit significantly higher genetic divergence relative to “expression invariant” controls, suggesting that species differences may in part be mediated by divergent selection on differentially expressed genes involved with altitude‐related adaptation. The recent split time and the absence of fixed differences between these two ecologically distinct species suggest the rapid evolution to an altitudinal cline involving selection on both sequence and expression variation.  相似文献   

9.
Natural populations ofNuphar luteum in the coastal plain of North Carolina present a morphological and geographical cline with ssp.macrophyllum representing one extreme and ssp.sagittifolium the other. Plants of intermediate morphology exist in abundance in areas between the two extremes. Data involving 1) analysis of variance within and among clones, 2) analysis of variation in seedling populations cultured under uniform conditions, 3) analysis of seedlings produced through artificial hybridization, and 4) reciprocal transplantation indicate the morphological cline to be genetically controlled with the leaf length-width ratio being the most constant and reliable feature for identification. An analysis of competitive and non-competitive populations within one pond provides evidence that natural selection of specific mature clones occurs under competitive conditions. Likewise, an analysis of the seedling potential of adult populations along the cline indicates that, in nature, a strong selection mechanism is operative during seed germination and/or seedling establishment. Chemical analyses of the aquatic habitats along the cline show several gradients to be correlated with the morphological cline. By extrapolation of the data, the variability evident inNuphar, not only among subspecies but also among populations and clones, is considered to result from adaptation to environmental selection pressures.  相似文献   

10.
The marine mussels, Mytilus edulis and Mytilus galloprovincialis, form an extensive hybrid zone in Europe where F2 hybrids and mussels of mixed genetic ancestry are often locally abundant. Hybrid zones are maintained by the interplay of dispersal and selection on hybrid genotypes but there has been vigorous debate on the form of selection that may occur in these systems. Tension zone models argue that selection is against hybrids because of developmental misregulation and is independent of the external environment. Exogenous selection models argue that selection is habitat-dependent and the structure of the hybrid zone is due to the distribution of habitat patches that vary in selection intensity. We test this prediction by comparing the genetic structure of mussel populations in open-coast habitats, where selection on hybrids is strong, to those within two independent estuaries. We show that mussels within these estuaries are protected from selection and thus selection is strongly dependent on habitat, which supports the exogenous selection hypothesis. Hybrid mussel populations on the open-coast experience strong selection against M. edulis-like genotypes, which has been postulated to be the result of differential dislodgment by waves. This hypothesis is supported by our results since mussels within sheltered habitats are protected from selection. There was, despite previous suggestions, no evidence of selection in favor of M. edulis-like mussels within either estuary.  相似文献   

11.
The Peruvian scallop (Argopecten purpuratus) has been introduced to China and has successfully been hybridized with the bay scallop (A. irradians irradians). The F1 hybrids of these two scallops exhibited a large increase in production traits and some other interesting new characteristics. To understand the genetic basis of this heterosis, nuclear gene and partial mtDNA sequences, and genomic in situ hybridization (GISH) were employed to analyze the genomic organization of the hybrids. Amplification of the ribosomal DNA internal transcribed spacer (ITS) showed that the parental ITS sequences were present in all the hybrid individuals, illustrating that the hybrid offspring inherited nuclear DNA from both parents. Sequence analyses of the ITS region further confirmed that the hybrids harbored alleles from their parents; some recombinant variants were also detected, which revealed some alterations in the nuclear genetic material of the hybrids. The analysis of mitochondrial 16S rDNA showed that the hybrids possessed sequences that were identical to the 16S rDNA of the female parents, proving a matrilineal inheritance of mitochondrial genes in scallops. In addition, GISH clearly discriminated between the parental chromosomes and indicated a combination of haploid genomes of duplex parents in the hybrids. The genetic analyses in our study illustrated that the F1 hybrids inherited nuclear material from both parents and cytoplasmic genetic material maternally, and some variations occurred in the genome, which might contribute to a further understanding of crossbreeding and heterosis in scallop species.  相似文献   

12.
While sexual selection is generally assumed to quickly cause or strengthen prezygotic barriers between sister species, its role in causing postzygotic isolation, through the unattractiveness of intermediate hybrids, is less often examined. Combining 24 years of pedigree data and recently developed species-specific molecular markers from collared (Ficedula albicollis) and pied (Ficedula hypoleuca) flycatchers and their hybrids, we were able to quantify all key components of fitness. To disentangle the relative role of natural and sexual selection acting on F1 hybrid flycatchers, we estimated various fitness components, which when combined represent the total lifetime reproductive success of F1 hybrids, and then compared the different fitness components of F1 hybrids to that of collared flycatchers. Female hybrid flycatchers are sterile, with natural selection being the selective force involved, but male hybrids mainly experienced a reduction in fitness through sexual selection (decreased pairing success and increased rate of being cuckolded). To disentangle the role of sexual selection against male hybrids from a possible effect of genetic incompatibility (on the rate of being cuckolded), we compared male hybrids with pure-bred males expressing intermediate plumage characters. Given that sexual selection against male hybrids is a result of their intermediate plumage, we expect these two groups of males to have a similar fitness reduction. Alternatively, hybrids have reduced fitness owing to genetic incompatibility, in which case their fitness should be lower than that of the intermediate pure-bred males. We conclude that sexual selection against male hybrids accounts for approximately 75% of the reduction in their fitness. We discuss how natural and sexual selection against hybrids may have different implications for speciation and conclude that reinforcement of reproductive barriers may be more likely when there is sexual selection against hybrids.  相似文献   

13.
Abstract Tension zones are maintained by the interaction between selection against hybrids and dispersal of individuals. Investigating multiple hybrid zones within a single species provides the opportunity to examine differences in zone structure on a background of differences in extrinsic factors (e.g., age of the zone, ecology) or intrinsic factors (e.g., chromosomes). The New Zealand tree weta Hemideina thoracica comprises at least eight distinct chromosomal races with diploid numbers ranging from 2n = 11 (XO) to 2n = 23 (XO). Five independent hybrid zones were located that involve races differing from one another by a variety of chromosomal rearrangements. The predicted negative correlation between extent of karyotypic differentiation (measured in terms of both percent of genome and number of rearrangements) and zone width was not found. Conversely, the widest zones were those characterized by two chromosome rearrangements involving up to 35% of the genome. The narrowest zone occurred where the two races differ by a single chromosome rearrangement involving approximately 2% of the genome. The five estimates of chromosomal cline width ranged from 0.5 km to 47 km. A comparative investigation of cline width for both chromosomal and mitochondrial markers revealed a complex pattern of zone characteristics. Three of the five zones in this study showed cline concordance for the nuclear and cytoplasmic markers, and at two of the zones the clines were also coincident. Zones with the widest chromosomal clines had the widest mitochondrial DNA clines. It appears that, even within a single species, the extent of karyotypic differentiation between pairs of races is not a good predictor of the level of disadvantage suffered by hybrids.  相似文献   

14.
The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of Icelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female × American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to Iceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of Iceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization.  相似文献   

15.
《Plant science》1988,57(3):215-223
Electrofusion has successfully been used for the production of somatic hybrid plants of Solanum melongena (eggplant) and S. khasianum. This fusion was carried out in a movable multi-electrode (2 mm apart) fusion chamber (500–700 μl capacity) containing a mixture (1:1) of mesophyll protoplasts of both species. Following an alignment of protoplasts induced by an A.C. fields of 125 V/cm and 1 Mhz, fusion was initiated by an exposure of the protoplast samples to a train of 3–4 D.C. pulses of 1.2 kV/cm, each 20 μs. The fusion rate was estimated at 30–40%, at least 30% of which were binary fusions. The mixture of fused protoplasts cultured in KM8p medium containing 0.2 mg/l 2,4-D, 0.5 mg/l zeatin, 1 mg/l NAA and 6.5% (w/v) glucose produced abundant calli, some of which gave rise to shoots on regeneration medium. Although no selection methods have been used, a total of 83 somatic hybrid plants were recovered from 83 individual calli in 3 fusion experiments. They accounted for 40–50% of all the regenerated plants. Several traits of the hybrids were intermediate to those of the parents. All the hybrid plants flowered preciously. The pollen viability averaged 12%, but none of them had set fruits. A random sample of the hybrids gave chromosome numbers ranging from 46 to 48. These numbers approximated to the expected tetraploid level (2n = 4x = 48 chromosomes) The hybridity was confirmed by the banding patterns ofperoxidase activities whcih were composed of the bands of both parents.  相似文献   

16.
The inheritance pattern of chloroplast and mitochondria is a critical determinant in studying plant phylogenetics, biogeography and hybridization. To better understand chloroplast and mitochondrial inheritance patterns in Actinidia (traditionally called kiwifruit), we performed 11 artificial interspecific crosses and studied the ploidy levels, morphology, and sequence polymorphisms of chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) of parents and progenies. Sequence analysis showed that the mtDNA haplotypes of F1 hybrids entirely matched those of the female parents, indicating strictly maternal inheritance of Actinidia mtDNA. However, the cpDNA haplotypes of F1 hybrids, which were predominantly derived from the male parent (9 crosses), could also originate from the mother (1 cross) or both parents (1 cross), demonstrating paternal, maternal, and biparental inheritance of Actinidia cpDNA. The inheritance patterns of the cpDNA in Actinidia hybrids differed according to the species and genotypes chosen to be the parents, rather than the ploidy levels of the parent selected. The multiple inheritance modes of Actinidia cpDNA contradicted the strictly paternal inheritance patterns observed in previous studies, and provided new insights into the use of cpDNA markers in studies of phylogenetics, biogeography and introgression in Actinidia and other angiosperms.  相似文献   

17.
The mussels Mytilus edulis L. and Mytilus galloprovincialis Lamark hybridise naturally in the wild along the Atlantic coast of Europe producing a patchwork of mixed pure species and hybrid populations. Individuals of both species were spawned in the laboratory and were hybridised in a series of reciprocal crosses. After 72 h, the proportion of eggs which developed into larvae (%yield) and the proportion of those larvae which had a normal veliger morphology (%normality) were estimated and compared between pure species and hybrid families. There were no significant differences in %yield or %normality between pure species and hybrids, but significant differences were evident between the offspring from different parents irrespective of whether they were hybrids or pure species. Therefore confirmation of hybrid heterosis in laboratory studies should not be based on a single, or a few reciprocal crosses. Hybrid and pure species veliger larvae were grown for approximately 4 weeks at 10, 14 or 20 °C. In all trials, pure M. galloprovincialis larvae grew significantly faster at 20 °C than either reciprocal hybrid or pure M. edulis larvae. Irrespective of temperature, in general, hybrid larvae grew slower than larvae of either pure species. Increased exposure to planktonic predation due to slow growth can be interpreted as selection against hybrids and this may play a role in the structure and distribution of mixed pure species and hybrid populations.  相似文献   

18.
I examined three aspects of the cladistic treatment of a set of 17 F1 hybrids of known parental origin: (1) impact of hybrids on consistency index (CI) and number of most parsimonious trees (Trees), (2) placement of hybrids in cladograms, and (3) impact of hybrids on hypotheses of relationship among species. The hybrids were added singly and in randomly selected sets of two to five to a data set composed of Central American species of Aphelandra (including the parents of all hybrids). Compared to analyses with the same number of OTUs all of which were species, the analyses with hybrids yielded results with significantly higher CI. There was no difference in Trees between analyses with hybrids versus species. There was thus no evidence that hybrids would appear to be more problematic for cladistic methods than species. Accordingly, hybrids will not be readily identifiable as taxa that cause marked change in these indices. About % of the hybrids were placed as the cladistically basal members of the lineage that included the most apomorphic parent. Relatively apomorphic hybrids were placed proximate to the most derived parent (ca. 13% of hybrids). Other placements occurred more rarely. The most frequent placements of hybrids thus did not distinguish them from normal intermediate or apomorphic taxa. When analyses with hybrids yielded multiple most parsimonious trees, these were no more different from each other than were the equally parsimonious trees that resulted from analyses with species. Most analyses with one or two hybrids resulted in minor or no change in topology. When hybrids caused topological change, they frequently caused rearrangements of weakly supported portions of the cladogram that did not include their parents. When they disrupted the cladistic placement of their parents, they often caused their parents to change positions, with at least one topology bringing the parental lineages into closer proximity with the hybrid placed between them. Hybrids between parents from the two main lineages of the group caused total cladistic restructuring. In fact, the degree of relationship between a hybrid's parents (measured by both cladistic and patristic distance) was strongly correlated with CI (negatively) and with the degree of disturbance to cladistic relationships (positively). Thus, hybrids between distantly related parents resulted in cladograms with low CI and major topological changes. This study suggests that hybrids are unlikely to cause breakdown of cladistic structure unless they are between distantly related parents. However, these results also indicate that cladistics may not be specially useful in distinguishing hybrids from normal taxa. The applicability of these results to other kinds of hybrids is examined and the likely cladistic treatment of hybrids using other sources of data is discussed.  相似文献   

19.
Maladaptive hybridization, as determined by the pattern and intensity of selection against hybrid individuals, is an important factor contributing to the evolution of prezygotic reproductive isolation. To identify the consequences of hybridization between Drosophila pseudoobscura and D. persimilis, we estimated multiple fitness components for F1 hybrids and backcross progeny and used these to compare the relative fitness of parental species and their hybrids across two generations. We document many sources of intrinsic (developmental) and extrinsic (ecological) selection that dramatically increase the fitness costs of hybridization beyond the well-documented F1 male sterility in this model system. Our results indicate that the cost of hybridization accrues over multiple generations and reinforcement in this system is driven by selection against hybridization above and beyond the cost of hybrid male sterility; we estimate a fitness loss of >95% relative to the parental species across two generations of hybridization. Our findings demonstrate the importance of estimating hybridization costs using multiple fitness measures from multiple generations in an ecologically relevant context; so doing can reveal intense postzygotic selection against hybridization and thus, an enhanced role for reinforcement in the evolution of populations and diversification of species.  相似文献   

20.
To understand the evolutionary consequences of hybridization between the outcrossing plant Geum rivale (Rosaceae) and the selfer Geum urbanum, we tested the predictions of two simple models that assume either (A) low or (B) high pollen fitness in hybrids. Model A predicts only four genotypic classes (G. rivale, G. rivale backcross [BCR], F1, and Geum urbanum) and asymmetric introgression from inbreeding to outbreeding species. Model B predicts additional genotypic classes and potential generation of novel inbreeding lines in the hybrid swarm. Amplified fragment length polymorphism (AFLP) analysis of adults revealed only the four genotypes predicted by model A. However, microsatellite analysis of parent–progeny arrays demonstrated production of selfed offspring by F1 and BCR maternal parents and contribution of these genotypes to outcross pollen pools, as predicted by model B. Moreover, AFLP and morphological analysis showed that the offspring generation comprised genotypes and phenotypes covering the entire spectrum of variation between the two parental species, in line with model B. A common garden experiment indicated no systematic reduction in fitness of offspring derived from hybrid parents. The genetic structure of the adults in the Geum hybrid swarm cannot be explained by restricted mating patterns but may result from ecological selection acting on a diverse offspring population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号