共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interaction between herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) and two neural cell lines, mouse neuroblastoma (N1E-115) and rat glioma (C6-BU-1), was investigated. N1E-115 cells were permissive to both types of HSV. In C6-BU-1 cells, on the other hand, all the HSV-1 strains tested so far showed persistent infection, and the infectious virus of HSV-2 strains disappeared spontaneously. The HSV-2-infected C6-BU-1 cells were positive for HSV-2-specific DNA sequences, virus-specific RNA, HSV-2-specific antigens and thymidine kinase activity, when no infectious virus was detected. The HSV-2 was reactivated from those C6-BU-1 cells by superinfection with murine cytomegalovirus (MCMV), but not with UV-irradiated MCMV or human cytomegalovirus. The reactivated HSV-2 was identical to the parental virus, when examined by restriction endonuclease cleavage analysis. 相似文献
3.
Uncoating the herpes simplex virus genome 总被引:2,自引:0,他引:2
Initiation of infection by herpes simplex virus (HSV-1) involves a step in which the parental virus capsid docks at a nuclear pore and injects its DNA into the nucleus. Once "uncoated" in this way, the virus DNA can be transcribed and replicated. In an effort to clarify the mechanism of DNA injection, we examined DNA release as it occurs in purified capsids incubated in vitro. DNA ejection was observed following two different treatments, trypsin digestion of capsids in solution, and heating of capsids after attachment to a solid surface. In both cases, electron microscopic analysis revealed that DNA was ejected as a single double helix with ejection occurring at one vertex presumed to be the portal. In the case of trypsin-treated capsids, DNA release was found to correlate with cleavage of a small proportion of the portal protein, UL6, suggesting that UL6 cleavage may be involved in making the capsid permissive for DNA ejection. In capsids bound to a solid surface, DNA ejection was observed only when capsids were warmed above 4 degrees C. The proportion of capsids releasing their DNA increased as a function of incubation temperature with nearly all capsids ejecting their DNA when incubation was at 37 degrees C. The results demonstrate heterogeneity among HSV-1 capsids with respect to their sensitivity to heat-induced DNA ejection. Such heterogeneity may indicate a similar heterogeneity in the ease with which capsids are able to deliver DNA to the infected cell nucleus. 相似文献
4.
Detection of herpes simplex virus type-2 DNA restriction fragments in human cervical carcinoma tissue. 总被引:2,自引:1,他引:2 下载免费PDF全文
DNA extracted from eight human cervical carcinomas, one lymph node metastasis and related control tissue was examined for the presence of herpes simplex virus (HSV) DNA sequences. Southern blot transfers of tumour and control DNA were hybridised with radioactively labelled cloned probes representing 70% of the HSV-2 genome. Specific hybridisation to HSV DNA sequences was observed in one of eight carcinoma tissues analysed. Hybridisation of HSV-2 DNA probes to BamHI and XhoI restriction enzyme fragments of tumour cell DNA which co-migrated with authentic HSV-2 viral fragments identified co-linear HSV-2 DNA sequences comprising 3% of the HSV-2 genome, between map coordinates 0.582 and 0.612. The remaining eight tumour and all control tissues analysed, showed no specific hybridisation to any of the probes used at levels of sensitivity which would detect 0.5 copies/cell of HSV-2 DNA restriction fragments of 2 kb or greater. 相似文献
5.
The reactivation of UV-irradiated herpes simplex virus (HSV) was investigated in irradiated and unirradiated transformed hamster cells in which infectious simian virus 40 (SV40) can be induced. Reactivation was enhanced when the cells were treated with UV light or mitomycin C prior to infection with HSV. The IV dose-response curve of this enhanced reactivation was strikingly similar to that found for induction of SV40 virus synthesis in cells treated under identical condictions. This is the first time that two SOS functions described in bacteria have been demonstrated in a single mammalian cell line. 相似文献
6.
Analyses of the herpes simplex virus (HSV) DNA sequences which are present in three HSV thymidine kinase-transformed (HSVtk+) mouse cell lines have revealed that these cells contain relatively large and variable portions of the viral genome. Two of these cell lines do not contain the viral DNA sequences known to encode the early viral genes normally responsible for regulating tk gene expression during lytic HSV infections. This finding suggests that cell-associated viral tk gene expression may be regulated by cellular rather than viral control mechanisms. In addition, we have compared the viral DNA sequences present in one unstable HSVtk+ cell line to those present in tk- revertant and tk+ rerevertant cell lines sequentially derived from it. Our results have shown that within the limits of sensitivity of our mapping approach, these three related cell lines contain the same set of viral DNA sequences. Thus, gross changes in viral DNA content do not appear to be responsible for the different tk phenotypes of these cells. 相似文献
7.
Inducible expression of herpes simplex virus type 2 glycoprotein gene gG-2 in a mammalian cell line.
The gG-2 glycoprotein gene of herpes simplex virus type 2 (HSV-2) was cloned into the mammalian expression vector pMSG under the control of the inducible mouse mammary tumor virus promoter. Transfection of this cloned gG-2 construct into NIH 3T3 cells resulted in the stable expression of gG-2 upon induction with dexamethasone. In addition, the 104,000-molecular-weight (104K) and 72K gG-2 precursors as well as the 34K secreted component were generated in the transformed cells. The synthesis of gG-2 in these transformed cells appeared to follow the same cleavage-processing pathway as gG-2 synthesis during an HSV-2 infection. These results indicate that the processing of gG-2 can occur in the absence of an HSV-2 infection. 相似文献
8.
Douglas O'Connell 《Autophagy》2016,12(3):451-459
More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation. 相似文献
9.
Boucher FD Yasukawa LL Kerns K Kastelein M Arvin AM Prober CG 《Clinical and diagnostic virology》1993,1(1):29-38
The gene (US4) coding for herpes simplex virus type 2 (HSV-2) glycoprotein G (gG-2) was cloned and constitutively expressed in Chinese hamster ovary (CHO) cells. The expression vector containing the dihydrofolate reductase (dhfr) gene, and the HSV-2 US4 gene under the control of the Simian virus 40 early promoter (SV40 EP), was transfected into dhfr-deficient CHO cells. The transfected cells were selected and amplified using methotrexate (MTX). To demonstrate that the gG-2 produced in these transformed cells had antigenic determinants in common with the native glycoprotein, CHO cells expressing gG-2 were used in an immunofluorescent assay (IFA) for the detection of HSV-2 type-specific antibodies in human serum samples. Seven of eight serum samples from adults with prior episodes of culture proven HSV-2 infections were found to be positive by the IFA method whereas none of seven serum samples from young children with culture documented HSV-1 infections were positive by IFA. Thus the recombinant CHO : gG-2 cells have diagnostic utility in an HSV-2 specific serologic assay. 相似文献
10.
M. Yu. Skoblov A. V. Lavrov A. G. Bragin D. A. Zubtsov V. L. Andronova G. A. Galegov Yu. S. Skoblov 《Russian Journal of Bioorganic Chemistry》2017,43(2):140-142
The genome nucleotide sequence of the reference strain of herpes simplex virus type 1 was obtained using the technique of full size sequencing. For the virus genome structure determination, 402444 reads with an average length of 202 bp were performed, which corresponded to the 542-fold genome coverage. The data were collected to 52 contigs with N50-4518 and the total contig length of 120929 bp. The sequence obtained was deposited into the GenBank database. 相似文献
11.
The effect of herpes simplex virus type 2 (HSV-2) infection on the synthesis of DNA in human embryonic fibroblast cells was determined at temperatures permissive (37 C) and nonpermissive (42 C) for virus multiplication. During incubation of HSV-2 infected cultures at 42 C for 2 to 4 days or after shift-down from 42 to 37 C, incorporation of (3H)TdR into total DNA was increased 2-to 30-fold as compared with mock-infected cultures. Analysis of the (3H)DNA suggested that host cell DNA synthesis was induced by HSV-2 infection. Induction of host cell DNA synthesis by HSV-2 also occurred in cells arrested in DNA replication by low serum concentration. The three strains of HSV-2 tested were capable of stimulating cellular DNA synthesis. Virus inactivated by UV irradiation, heat, or neutral red dye and light did not induce cellular DNA synthesis, suggesting that an active viral genome is necessary for induction. 相似文献
12.
Mechanisms of expression of herpes simplex virus-common surface antigens in clonal cells of a herpes simplex virus type 2-transformed line. 下载免费PDF全文
Rabbit antiserum hyperimmune to herpes simplex virus type 1 was used to study the expression of herpes simplex virus type-common surface antigens (CSA) by indirect immunofluorescence tests in three representative cell clones isolated from a herpes simplex virus type 2-transformed hamster line, 155-4. These three clones showed different phenotypes with respect to CSA expression: (i) a CSA-positive type (clone (155-4-213), in which the antigens increased soon (5 h) after seeding at 37 degrees C, but not after treatment with actinomycin D; (ii) a CSA-inducible type (clone 155-4-03), in which the antigens increased after treatment with actinomycin D (2 micrograms/ml) for 20 h, but not after seeding only; and (iii) a CSA-negative type (clone 155-4-16), in which the antigens did not increase after seeding or after actinomycin D treatment. CSA expression in the CSA-positive type was inhibited by 2-deoxy-D-glucose, but not by puromycin, suggesting that the expression required glycosylation, but not active protein synthesis. CSA expression in this type was insensitive to the protease inhibitors antipain and p-nitrophenyl-p'-guanidinobenzoate. On the other hand, actinomycin D-induced CSA expression in the CSA-inducible type was inhibited by both 2-deoxy-D-glucose and puromycin, suggesting that the induced expression required both glycosylation and protein synthesis. CSA expression induced in this type was sensitive to the two protease inhibitors at concentrations having little effect on overall cellular metabolism or cell viability. These results indicate that CSA expressions in the CSA-positive type and the CSA-inducible type are enhanced by different mechanisms. 相似文献
13.
The growth characteristics of the KOS strain of herpes simplex virus type 1 (HSV-1) in cell lines of nervous tissues origin were examined in an attempt to develop a tissue culture system mimicking the in vivo state of HSV-1 latency. We have previously reported that the B103 rat brain neuroma cell line is nonpermissive for growth of the KOS strain. In this report, we show that this nonpermissiveness is a temperature- and multiplicity-dependent phenomenon, with minimum virus yields at an elevated temperature and a low multiplicity of infection. Under these conditions, B103 cells survived infection with active wild-type or mutant HSV-1, whereas similarly treated Vero cells were killed. Six independent cultures of B103 cells surviving HSV-1 infection have been established. The surviving cells ceased production of any HSV-1 virus by 14 days postinfection and resumed growth and division at rates comparable to those of uninfected B103 cells. Survivor cells continued to express HSV-1-specific antigens, however, as detected by indirect immunofluorescence and by surface iodination followed by immunoprecipitation and polyacrylamide gel electrophoresis. The survivor cells did not express all of the surface proteins seen on productively infected B103 cells, and they were not susceptible to complement-mediated immune cytolysis with anti-HSV-1 antiserum. These results demonstrate that at least a portion of the HSV-1 genome is being harbored in these survivor cells. 相似文献
14.
Herpes simplex virus type 1 (HSV-1) infection of a rat central nervous system tumor cell line led to almost complete destruction of the cells. Cells that survived the infection could be isolated and shown to produce infectious HSV particles for variable lengths of time in culture ranging from 20 to 57 passages. Even though infectious virus production eventually ceased, the cell lines continued to produce herpes-specified proteins as measured by immunological techniques. These cells also showed herpesvirus-like structures in the electron microscope. The persistently infected cells that produced HSV antigens and bore HSV sequences were resistant to superinfection by HSV-1. The resistance was not due to failure of adsorption of the virus or to the production of interferon by the cells. The nature of the block in HSV replication in these neurotumor cells, which contain and partially express the HSV genome, is unknown, but may offer an interesting parallel to the known latency of HSV in neural tissues. 相似文献
15.
Liashkovich I Hafezi W Kühn JM Oberleithner H Shahin V 《Journal of molecular recognition : JMR》2011,24(3):414-421
Herpes simplex virus type 1 (HSV-1) is a widespread human pathogen infecting more than 80% of the population worldwide. Its replication involves an essential, poorly understood multistep process, referred to as uncoating. Uncoating steps are as follows: (1) The incoming capsid pinpoints the nuclear pore complex (NPC). (2) It opens up at the NPC and releases the highly pressurized viral genome. (3) The viral genome translocates through the NPC. In the present review, we highlight recent advances in this field and propose mechanisms underlying the individual steps of uncoating. We presume that the incoming HSV-1 capsid pinpoints the NPC by hydrophobic interactions and opens up upon binding to NPC proteins. Genome translocation is initially pressure-driven. 相似文献
16.
17.
The primary amino acid sequence of the major herpes simplex virus type 1 (HSV-1)-infected cell polypeptide 8 (ICP8) deduced from the DNA sequence of the unique long open reading frame 29 (UL29 ORF) contains a potential metal-binding domain of the form Cys-X2-5-Cys-X2-15-A-X2-4-A where A may be either histidine or cysteine and X is any amino acid. The putative metal-binding sequence in ICP8 encompasses residues 499-512 as follows: C-N-L-C-T-F-D-T-R-H-A-C-V-H-. Atomic absorption analysis of several preparations of ICP8 indicates the presence of 1 mol of zinc/mol of protein. The zinc is resistant to removal by dialysis against concentrations of EDTA which deplete zinc from alcohol dehydrogenase. The bound zinc can be removed by reaction with the reversible sulfhydryl reagent p-hydroxymercurimethylsulfonate and the zinc-depleted protein transiently retains DNA binding activity. Digestion of both native and zinc-depleted ICP8 with V8 protease indicates that the bound zinc is required for the structural integrity of the protein. 相似文献
18.
A herpes simplex virus 1 US11-expressing cell line is resistant to herpes simplex virus infection at a step in viral entry mediated by glycoprotein D. 总被引:1,自引:6,他引:1 下载免费PDF全文
A baby hamster kidney [BHK(tk-)] cell line (US11cl19) which stably expresses the US11 and alpha 4 genes of herpes simplex virus 1 strain F [HSV-1(F)] was found to be resistant to infection with HSV-1. Although wild-type HSV-1(F) attached with normal kinetics to the surface of US11cl19 cells, most cells showed no evidence of infection and failed to accumulate detectable amounts of alpha mRNAs. The relationship between the expression of UL11 and resistance to HSV infection in US11cl19 cells has not been defined, but the block to infection with wild-type HSV-1 was overcome by exposing cells with attached virus on their surface to the fusogen polyethylene glycol, suggesting that the block to infection preceded the fusion of viral and cellular membranes. An escape mutant of HSV-1(F), designated R5000, that forms plaques on US11cl19 cells was selected. This mutant was found to contain a mutation in the glycoprotein D (gD) coding sequence that results in the substitution of the serine at position 140 in the mature protein to asparagine. A recombinant virus, designated R5001, was constructed in which the wild-type gD gene was replaced with the R5000 gD gene. The recombinant formed plaques on US11cl19 cells with an efficiency comparable to that of the escape mutant R5000, suggesting that the mutation in gD determines the ability of the mutant R5000 to grow on US11cl19 cells. The observation that the US11cl19 cells were slightly more resistant to fusion by polyethylene glycol than parental BHK(tk-) cells led to the selection and testing of clonal lines from unselected and polyethylene glycol-selected BHK(tk-) cells. The results were that 16% of unselected to as much as 36% of the clones selected for relative resistance to polyethylene glycol fusion exhibited various degrees of resistance to infection. The exact step at which the infection was blocked is not known, but the results illustrate the ease of selection of cell clones with one or more sites at which infection could be blocked. 相似文献
19.
Consequences of herpes simplex virus type 2 and human cell interaction at supraoptimal temperatures. 下载免费PDF全文
The consequences of herpes simplex virus type 2 (HSV-2) and human embryonic fibroblast cell interaction at different temperatures (37, 40, and 42 degrees C) were investigated. Incubation at 37 or 40 degrees C was permissive for HSV-2 inhibition of host DNA synthesis, induction of virus-specific DNA replication, and infectious virus production. The amount of [methyl-3H]thymidine incorporated into viral DNA and the final yield of new infectious virus were significantly reduced at 40 degrees C compared to 37 degrees C. At 42 degrees C, detectable virus-specific DNA synthesis was totally blocked. Maximum stimulation of host cell DNA synthesis at 42 degrees C was measured after a multiplicity of infection of 0.5 to 1.0 PFU/cell. By autoradiography, data indicated that HSV-2 stimulates host cell chromosomal DNA synthesis. Stimulation of thymidine kinase activity with thermostability properties in common with a virus enzyme was detected during the first 24 h of infection at 42 degrees C, after 24 h the enhanced thymidine kinase activity had properties in common with host cell isozymes. The data obtained during this investigation indicated that stimulation of host cell DNA synthesis does not require viral DNA synthesis. 相似文献
20.
Enhanced mutagenesis parallels enhanced reactivation of herpes virus in a human cell line. 总被引:3,自引:2,他引:3 下载免费PDF全文
U.v. irradiation of human NB-E cells results in enhanced mutagenesis and enhanced reactivation of u.v.-irradiated H-1 virus grown in those cells ( Cornelis et al., 1982). This paper reports a similar study using herpes simplex virus (HSV) in NB-E cells. The mutation frequency of HSV (resistance of virus plaque formation to 40 micrograms/ml iododeoxycytidine ) increased approximately linearly with exposure of the virus to u.v. radiation. HSV grown in unirradiated cells gave a slope of 1.8 X 10(-5)m2/J, with 3.2 X 10(-5)m2/J for HSV grown in cells irradiated (3 J/m2) 24 h before infection. There was no evidence for mutagenesis of unirradiated virus by irradiated cells, as seen with H-1 virus. Enhanced reactivation of irradiated HSV in parallel cultures increased virus survival, manifested as a change in slope of the final component of the two-component survival curve from a D0 of 27 J/m2 in unirradiated cells to 45 J/m2 in irradiated cells. Thus, enhanced mutagenesis and enhanced reactivation occurred for irradiated HSV in NB-E cells. The difference in the enhanced mutagenesis of HSV (dependent on damaged DNA sites) and of H-1 virus (primarily independent of damaged DNA sites) is discussed in terms of differences in DNA polymerases. 相似文献