首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H G Preuss  D M Roxe  E Bourke 《Life sciences》1987,41(14):1695-1702
We believe that two findings are interconnected and help to comprehend a major mechanism behind the regulation of renal ammonia production during acidosis. First, slices from acidotic compared to control and alkalotic rats produce more ammonia from glutamine. Second, inhibition of renal oxidative metabolism at various points by metabolic inhibitors augments slice ammoniagenesis. Based on this, our purpose was to determine whether enhanced renal ammoniagenesis during acidosis could occur through the same mechanism as the metabolic inhibitors. However, metabolic inhibitors (malonate; arsenite; 2,4-dinitrophenol) usually decrease while acidosis increases slice gluconeogenesis. There is one known exception. Fluorocitrate, which blocks citrate metabolism, simulates the acidotic condition by enhancing both ammonia and glucose production. Accordingly, a block of oxidative metabolism if located prior to citrate oxidation in the tricarboxylic acid cycle could theoretically augment ammoniagenesis during acidosis. Lactate, is a major renal fuel whose oxidative metabolism would be blocked by fluorocitrate. There, we concentrated on the effects of acidosis on lactate as well as glutamine metabolism. Lactate decarboxylation decreases in the face of increased glucose production during acidosis, and lactate inhibition of glutamine decarboxylation decreases in slices from acidotic rats. Also, we found lesser oxygen consumption in the presence of lactate by kidney slices from acidotic rats compared to control and alkalotic rats. We postulate that relatively less incorporation of lactate into the TCA cycle, causing decreased citrate formation and citrate oxidation during acidosis, contributes, at least in part, to acidotic adaptation of ammoniagenesis.  相似文献   

2.
End products of glucose and glutamine metabolism by L929 cells   总被引:2,自引:0,他引:2  
Products of glucose and glutamine metabolism by L929 cells were detected and quantitated by gas chromatography and mass spectrometry of the oxime-trimethylsilyl derivatives. This method allowed detection and identification of all major carboxylic and amino acids produced in the system. Although lactic acid was expected to be the major product, alanine, citric, glutamic, aspartic, and pyruvic acids were also released into the culture medium at significant rates. Incorporation of labeled carbon from D-[U-13C]glucose showed that the alanine, lactic, and pyruvic acids were derived from glucose as was one-third of the citric acid carbon. The rate of glucose utilization for production of these end products was 29-fold greater than the rate of glucose oxidation to CO2, and calculated ATP production from alanine and pyruvate synthesis exceeded that from lactate synthesis by nearly 2-fold. Utilization of glutamine for synthesis of aspartic, glutamic, and citric acids also exceeded the rate of glutamine oxidation, thereby making end-product synthesis from glucose and glutamine the dominant cellular metabolic activity. In the absence of glucose, synthesis and intracellular levels of aspartic and glutamic acids increased, whereas synthesis and cell content of the other acids decreased markedly. This response is consistent with the metabolic pattern proposed by Moreadith and Lehninger (Moreadith, R.W., and Lehninger, A.L. (1984) J. Biol. Chem. 259, 6215-6221) in which much of the glutamine used by these cells is converted to aspartate in the absence of a pyruvate source and to aspartate or citrate in the presence of pyruvate.  相似文献   

3.
重组CHO细胞培养过程中氨对细胞代谢的影响   总被引:4,自引:2,他引:4  
研究了重组CHO细胞批培养过程中,氨浓度对细胞的葡萄糖、谷氨酰胺及其它氨基酸代谢的影响。表明,细胞对葡萄糖和谷氨酰胺的得率系数随着氨浓度的增加而降低,起始氨浓度为566mmol/L的批培养过程与起始氨浓度为021mmol/L的批培养过程相比,细胞对葡萄糖和谷氨酰胺的得率系数分别下降了78%和74%,细胞对其它氨基酸的得率系数也分别下降了50%~70%。氨浓度的增加明显地改变了细胞的代谢途径,葡萄糖代谢更倾向于厌氧的乳酸生成。在谷氨酰胺的代谢过程中,谷氨酸经谷氨酸脱氢酶进一步生成α酮戊二酸的过程受到了氨的抑制,而氨对谷氨酸经谷氨酸转氨酶反应生成α酮戊二酸的过程有促进作用,但总体上谷氨酸进一步脱氨生成α酮戊二酸的反应受到了氨的限制。  相似文献   

4.
Measurement of the arteriovenous differences for free amino acids across rat kidney reveals that glycine and citrulline are removed and serine and arginine are added to the circulation. In addition, glutamine is taken up in large quantities by kidneys of animals that need to excrete large quantities of acid (e.g., diabetic animals, NH4Cl-fed animals, and animals fed a high protein diet). Glutamine is the major precursor of urinary ammonia and thus renal glutamine metabolism plays a key role in acid-base homeostasis. This process occurs primarily in the cells of the convoluted proximal tubule. Glutamine carbon is converted to glucose in acidotic rats and is totally oxidized in dogs. Regulation of glutamine metabolism occurs at two levels: acute regulation and chronic regulation. Acute regulation is, in part, mediated through a fall in intracellular [H+]. This activates alpha-ketoglutarate dehydrogenase and, ultimately, glutaminase. Chronic regulation involves induction of key enzymes, including, in the rat, glutaminase, glutamate dehydrogenase, and phosphoenolpyruvate carboxykinase. During the acidosis of prolonged starvation, the kidneys' requirement for glutamine must be met from muscle proteolysis and thus becomes a drain on lean body mass. Serine synthesis occurs by two separate pathways: from glycine by the combined actions of the glycine cleavage enzyme and serine hydroxymethyltransferase and from gluconeogenic precursors using the phosphorylated-intermediate pathway. Both pathways are located in the cells of the proximal tubule. Conversion of glycine to serine is ammoniagenic and the activity of the glycine cleavage enzyme is increased in acidosis. The function of serine synthesis by the phosphorylated-intermediate pathway is not apparent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
P C Tullson  L Goldstein 《Enzyme》1987,37(3):127-133
Glutamine, the principal source of urinary ammonia, can be fully oxidized or converted to glucose by the kidney. To be oxidized, the carbon skeleton of glutamine must enter the TCA cycle as acetyl CoA formed by pyruvate dehydrogenase (PDH). The purpose of this study was to measure kidney PDH activity (active and total) following acute acid-base changes in vivo. PDHa activity was elevated after acute metabolic alkalosis and acidosis and unchanged by respiratory acidosis. Kidney ADP/ATP, CoA/acetyl CoA and calculated mitochondrial NAD+/NADH ratios were also determined and revealed an increase in kidney ADP/ATP with alkalosis but no changes during metabolic and respiratory acidosis.  相似文献   

6.
To test the significance of the purine nucleotide cycle in renal ammoniagenesis, studies were conducted with rat kidney cortical slices using glutamate or glutamine labelled in the alpha-amino group with 15N. Glucose production by normal kidney slices with 2 mM-glutamine was equal to that with 3 mM-glutamate. With L-[15N]glutamate as sole substrate, one-third of the total ammonia produced by kidney slices was labelled, indicating significant deamination of glutamate or other amino acids from the cellular pool. Ammonia produced from the amino group of L-[alpha-15N]glutamine was 4-fold higher than from glutamate at similar glucose production rates. Glucose and ammonia formation from glutamine by kidney slices obtained from rats with chronic metabolic acidosis was found to be 70% higher than by normal kidney slices. The contribution of the amino group of glutamine to total ammonia production was similar in both types of kidneys. No 15N was found in the amino group of adenine nucleotides after incubation of kidney slices from normal or chronically acidotic rats with labelled glutamine. Addition of Pi, a strong inhibitor of AMP deaminase, had no effect on ammonia formation from glutamine. Likewise, fructose, which may induce a decrease in endogenous Pi, had no effect on ammonia formation. The data obtained suggest that the contribution of the purine nucleotide cycle to ammonia formation from glutamine in rat renal tissue is insignificant.  相似文献   

7.
Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas   总被引:7,自引:0,他引:7  
F Martin  M Ramstedt  K S?derh?ll 《Biochimie》1987,69(6-7):569-581
The literature concerning the metabolism of carbon and nitrogen compounds in ectomycorrhizal associations of trees is reviewed. The absorption and translocation of mineral ions by the mycelia require an energy source and a reductant which are both supplied by respiratory catabolism of carbohydrates produced by the host plant. Photosynthates are also required to generate the carbon skeletons for amino acid and carbohydrate syntheses during the growth of the mycelia. Competition for photosynthates occurs between the fungal cells and the various vegetative sinks in the host tree. The nature of carbon compounds involved in these processes, their routes of metabolism, the mechanisms of control and the partitioning of metabolites between the various sites of utilization are only poorly understood. Both ascomycetous and basidiomycetous ectomycorrhizal fungi synthesize and some, if not all, accumulate mannitol, trehalose and triglycerides. The fungal strains employ the Embden--Meyerhof pathway of glucose catabolism and the key enzymes of the pentose phosphate pathway (6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, transaldolase and transketolase). Anaplerotic CO2 fixation, via pyruvate carboxylase and/or phosphoenolpyruvate carboxykinase, provides high pools of amino acids. This process could be important in the recapture and assimilation of respired CO2 in the rhizosphere. The ectomycorrhizas are thought to contain the Embden--Meyerhof pathway, the pentose phosphate pathway and the tricarboxylic acid cycle, which provide the carbon skeletons for the assimilation of ammonia into amino acids. The main route of assimilation of ammonia appears to be through the glutamine synthetase-glutamate synthase cycle in the ectomycorrhizas. Glutamate dehydrogenase plays a minor role in this process. Glutamate dehydrogenase and glutamine synthetase are present in free-living ectomycorrhizal fungi and they participate in the assimilation of ammonia and the synthesis of amino acids through the glutamate dehydrogenase/glutamine synthetase sequence. In both in vitro cultures of fungi and ectomycorrhizas, the assimilated nitrogen accumulates in glutamine. Glutamine, but also ammonia, are thought to be exported from the fungal tissues to the host cells. Studies on the metabolism of ectomycorrhizas and ectomycorrhizal fungi have focused on the metabolic pathways and compounds which accumulate in the symbiotic tissues. Studies on regulation of the overall process, and the control of enzyme activity in particular, are still fragmentary.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
13C-n.m.r. spectroscopy and g.c.-m.s. were used to determine the metabolic fate of glutamate carbon in rat kidney. The main purpose was to characterize the effect of chronic metabolic acidosis on the utilization of glutamate carbon. Renal tubules obtained from normal and chronically acidotic rats were incubated in Krebs buffer, pH 7.4, in the presence of 2.5 mM-[3-13C]glutamate. During the course of incubation the concentrations of total glucose and NH3 were significantly (P less than 0.05) higher in tissue from acidotic rats. The levels of some tricarboxylic-acid-cycle intermediates were higher (P less than 0.05) in control tissue. In control tissue, 13C-n.m.r. spectra demonstrated a significantly higher rate of 13C appearance of aspartate, glutamine and [2,4-13C]glutamate. However, in acidosis the resonances of [13C]glucose carbon atoms were significantly higher. In the control, approx. 15% of glutamate carbon was accounted for by [13C]glucose formation as against 30% in chronic acidosis. However, in control tissue, 44% of glutamate carbon utilization was accounted for by recycling to glutamate and formation of aspartate, glutamine and GABA. In acidosis, only 11% was so recovered. Analysis of 15NH3 formation during the course of incubation with 2.5 mM-[15N]glutamate demonstrated a positive association between the appearance of [13C]glucose and 15NH3 both in the control and in acidosis. The data suggest that the control of gluconeogenesis and ammoniagenesis in acidosis is, in part, referable to a diminution in the rate of the reductive amination of alpha-oxoglutarate, that of the transamination reaction and that of glutamine synthesis.  相似文献   

9.
A detailed reaction network of mammalian cell metabolism contains hundreds of enzymatic reactions. By grouping serial reactions into single overall reactions and separating overlapped pathways into independent reactions, the total number of reactions of the network is significantly reduced. This strategy of manipulating the reaction network avoids the manipulations of a large number of reactions otherwise needed to determine the reaction extents. A stoichiometric material balance model is developed based on the stoichiometry of the simplified reaction network. Closures of material balances on glucose and each of the 20 amino acids are achieved using experimental data from three controlled fed-batch and one-batch hybridoma cultures. Results show that the critical role of essential amino acids, except glutamine, is to provide precursors for protein synthesis. The catabolism of some of the essential amino acids, particularly isoleucine and leucine, is observed when an excess amount of these amino acids is available in the culture medium. It was found that the reduction of glutamine utilization (for reducing ammonia production) is accompanied by an increase in the uptake of nonessential amino acids (NAAs) from the culture medium. This suggests that NAAs are necessary even though they are not essential for cell growth. A glutamine balance shows that less than 20% of the glutamine nitrogen is utilized for essential roles, such as protein and nucleotide syntheses. A relatively constant percentage (about 45%) of the glutamine nitrogen is utilized for NAA biosynthesis, despite the fact that the absolute amount varies among the four experiments. As to the carbon skeleton of glutamine, a significant portion enters the tricarboxylic acid (TCA) cycle. A material balance on glucose shows that most of the glucose (81%) is converted into lactate when glucose is in excess. On the other hand, when glucose is limited, lactate production is considerably reduced, while a major portion of glucose (48%) enters the TCA cycle. The fraction of glucose used for the synthesis of cellular components ranges from 9 to 28%. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
The neuronal effects of glucose deficiency on amino acid metabolism was studied on three-dimensional cultures of rat telencephalon neurones. Transient (6 h) exposure of differentiated cultures to low glucose (0.25 mm instead of 25 mm) caused irreversible damage, as judged by the marked decrease in the activities of two neurone-specific enzymes and lactate dehydrogenase, 1 week after the hypoglycemic insult. Quantification of amino acids and ammonia in the culture media supernatants indicated increased amino acid utilization and ammonia production during glucose-deficiency. Measurement of intracellular amino acids showed decreased levels of alanine, glutamine, glutamate and GABA, while aspartate was increased. Added lactate (11 mm) during glucose deficiency largely prevented the changes in amino acid metabolism and ammonia production, and attenuated irreversible damage. Higher media levels of glutamine (4 mm instead of 0.25 mm) during glucose deprivation prevented the decrease of intracellular glutamate and GABA, while it further increased intracellular aspartate, ammonia production and neuronal damage. Both lactate and glutamine were readily oxidized in these neuronal cultures. The present results suggest that in neurones, glucose deficiency enhances amino acid deamination at the expense of transamination reactions. This results in increased ammonia production and neuronal damage.  相似文献   

11.
1. When isolated kidneys from fed rats were perfused with glutamine the rate of ammonia release at pH7.4 (110–360μmol/h per g dry wt.) was one to two times that of glutamine removal. Glucose formation from 5mm-glutamine was 16μmol/h per g. If kidneys were perfused with glutamine at pH7.1 (10–13mm-sodium bicarbonate) there was no increase in glutamine removal or in the formation of ammonia or glucose. 2. When isolated kidneys from fed rats were perfused with glutamate at pH7.4, glucose formation was 59μmol/h per g, glutamine formation was 182μmol/h per g and ammonia release was negligible. At pH7.1 glutamine synthesis was inhibited and formation of ammonia and glucose were increased. 3. In perfused kidneys from acidotic rats, which had received 1.5% (w/v) NH4Cl to drink for 7–10 days, gluconeogenesis from glutamine was enhanced (101μmol/h per g). Glutamine removal and ammonia formation were also increased, compared with the rates in perfused kidney from normal rats. The extra glutamine consumed was equivalent to the extra glucose formed. 4. When the kidney from the 7–10-day-acidotic rat was perfused with glutamate gluconeogenesis was increased (113μmol/h per g). Synthesis of glutamine was decreased, and ammonia release was approximately equal to the rate of glutamate removal. 5. The time-course of these metabolic alterations was investigated after the rapid induction of acidosis by infusion of 0.25m-HCl into the right side of the heart. The increase in gluconeogenesis from glutamine developed gradually over several hours. When kidneys from 6h-acidotic rats were perfused with glutamate, formation of glucose and glutamine were both rapid. 6. In acidotic rat kidneys perfused with glutamine, tissue concentrations of glutamate and glucose 6-phosphate were increased compared with those in control perfused kidneys from non-acidotic rats. 7. The results are discussed in terms of control of the renal metabolism of glutamine. In particular, it is suggested that in acidotic rats glucose formation is the major fate of the carbon of the extra glutamine utilized by the kidney, and that inhibition of glutamine synthetase could contribute to the increase in intracellular ammonia concentration in the kidney.  相似文献   

12.
This study investigates how the metabolic activity and de novo synthesis of amino acids from glucose correlate with changes in intracellular organic osmolytes involved in astrocytic volume regulation during hyperammonemia and hyponatremia. Multinuclear (1H-, 31P-, 13C-) NMR spectra were recorded to quantify water-soluble metabolites, the cellular energy state, as well as the incorporation of [1-(13)C]glucose into amino acids of primary astrocyte cultures. Myo-inositol levels were strongly decreased already at 3h after treatment with NH4Cl; other intracellular osmolytes, such as hypotaurine and choline-containing compounds were also decreased, along with a concomitant increase of both the total concentration and the amount of newly synthesized glutamine, alanine, and glutathione. During ammonia stress, the decrease of organic osmolytes compensated in part for increased intracellular osmolarity caused by amino acid synthesis. Hypotonic conditions alone also lowered the content of organic osmolytes including cellular amino acids, but much less than in hyperammonemia. This was due to impaired mitochondrial metabolic activity via the Krebs cycle, which also enhanced ammonia-induced ATP decrease. However, the changes in the sum of organic osmolytes were not significantly different after ammonia-treatment in hypoosmotic compared to anisoosmotic media, suggesting that the decrease of cellular organic osmolytes may not adequately compensate for the increased intracellular osmolarity caused by amino acids under hyponatremia. Therefore, the ammonia-induced release of osmolytes is an early process in response to increased intracellular osmolarity evoked by increased glutamine and alanine as a consequence of stimulated metabolic activity. The imperfect correlation of changes in astrocytic glutamine, other organic osmolytes, and the cellular energy state under hyperammonemic stress in isoosmotic and hypoosmotic media, however, point to additional mechanisms contributing to astrocyte dysfunction in hyperammonemic states, which are independent from glutamine formation.  相似文献   

13.
Cultures of the cyanobacterium Microcystis firma show rhythmic uptake and release of ammonia under conditions of carbon limitation. The massive removal of ammonia from the medium during the first light phase has little impact on the intracellular pH: a pH shift of less than 0.2 U towards the alkaline can be measured by in vivo 31P NMR. Furthermore, the energy status of the cells remains regulated. In vivo 15N NMR of M. firma, cultivated either with labelled nitrate or ammonia as the sole nitrogen source, reveals only gradual differences in the pool of free amino acids. Additionally both cultivation types show -aminobutyric acid, acid amides and yet unassigned secondary metabolites as nitrogen storing compounds. Investigating the incorporation of nitrogen under carbon limitation, however, only the amide nitrogen of glutamine is found permanently labelled in situ. While transamination reactions are blocked, nitrate reduction to ammonia can still proceed. Cation exchange processes in the cell wall are considered regarding the ammonia disappearance in the first phase, and the control of ammonia uptake is discussed with respect to the avoidance of intracellular toxification.Abbreviations GABA -aminobutyric acid - GOGAT glutamate synthase - GS glutamine synthetase - MDP methylene diphosphonate - MOPSO 3-(N-morpholino)-2-hydroxy-propanesulfonic acid - NDPS nucieoside diphosphosugars - NOE nuclear Overhauser effect - NMR nuclear magnetic resonance For convenience, the term ammonia is used throughout to denote ammonia or ammonium ion when there is no good evidence as to which chemical species is involved  相似文献   

14.
15.
Paul  John S.  Cornwell  Karen L.  Bassham  James A. 《Planta》1978,142(1):49-54
Addition of ammonia to a suspension of photosynthesizing isolated mesophyll cells from P. somniferum quantitatively alters the pattern of carbon metabolism by increasing rates of certain key ratelimiting steps leading to amino-acid synthesis and by decreasing rates of rate-limiting steps in alternative biosynthetic pathways. Of particular importance is the stimulation of reactions mediated by pyruvate kinase and phosphoenolpyruvate carboxylase. The increased rates of these two reactions, which result in an increased flow of carbon into the tricarboxylic-acid cycle, correlate with a rapid rise in glutamine (via glutamine synthetase) which draws carbon off the tricarboxylic-acid cycle as -ketoglutarate. Increased flux of carbon in this direction appears to come mainly at the expense of sucrose synthesis. The net effect of addition of ammonia to mesophyll cells is thus a redistribution of newly fixed carbon away from carbohydrates and into amino acids.  相似文献   

16.
1. Portacaval shunting in rats results in several metabolic alterations similar to those seen in patients with hepatic encephalopathy. The characteristic changes include: (a) diminution of cerebral function; (b) raised plasma ammonia and brain glutamine levels; (c) increased neutral amino acid transport across the blood-brain barrier; (d) altered brain and plasma amino acid levels; and (e) changes in brain neurotransmitter content. The aetiology of these abnormalities remains unknown. 2. To study the degree to which ammonia could be responsible, rats were made hyperammonaemic by administering 40 units of urease/kg body weight every 12 h and killing the rats 48 h after the first injection. 3. The changes observed in the urease-treated rats were: (a) whole-brain glucose use was significantly depressed, whereas the levels of high-energy phosphates remained unchanged; (b) the permeability of the blood-brain to barrier to two large neutral amino acids, tryptophan and leucine, was increased; (c) blood-brain barrier integrity was maintained, as indicated by the unchanged permeability-to-surface-area product for acetate; (d) plasma and brain amino acid concentrations were altered; and (e) dopamine, 5-hydroxytryptamine (serotonin) and noradrenaline levels in brain were unchanged, but 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of 5-hydroxytryptamine, was elevated. 4. The depressed brain glucose use, increased tryptophan permeability-to-surface-area product, elevated brain tryptophan content and rise in the level of cerebral 5-HIAA were closely correlated with the observed rise in brain glutamine content. 5. These results suggest that many of the metabolic alterations seen in rats with portacaval shunts could be due to elevated ammonia levels. Furthermore, the synthesis or accumulation of glutamine may be closely linked to cerebral dysfunction in hyperammonaemia.  相似文献   

17.
Effects of biochemical factors, i.e., medium components and metabolic byproducts, on growth of Chinese hamster ovary (CHO) cells were investigated. Glucose and ammonia were found to inhibit the growth. Kinetic analysis gave the inhibition constants, 0.14 g l-1 for ammonia and 5.0 g l-1 for glucose. Since glutamine was unstable and was a main source of ammonia, precise studies on glutamine degradation and ammonia formation process were done. By evaluating the spontaneous reactions, net glutamine utilization and net ammonia production by the cells could be estimated. It became evident that asparagine could support the growth of CHO cells as a stable substitute for glutamine. Then, a glucose fed-batch culture was grown on a glutamine free and asparagine supplemented medium. Because of (1) low glucose concentration, but (2) no glucose limitation and (3) low ammonia accumulation, the maximum total cell concentration reached 3.4 x 10(6) ml-1, which was 1.8 times greater than that in the control experiment (initial 1.15 g l-1 glucose and 0.29 g l-1 glutamine, and no glucose feed).  相似文献   

18.
Glutamate modifies ventilation by altering neural excitability centrally. Metabolic acid-base perturbations may also alter cerebral glutamate metabolism locally and thus affect ventilation. Therefore, the effect of metabolic acid-base perturbations on central nervous system glutamate metabolism was studied in pentobarbital-anesthetized dogs under normal acid-base conditions and during isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid transfer rates of radiotracer [13N]ammonia and of [13N]glutamine synthesized de novo via the reaction glutamate+NH3-->glutamine in brain glia were measured during normal acid-base conditions and after 90 min of acute isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid [13N]ammonia and [13N]glutamine transfer rates decreased in metabolic acidosis. Maximal glial glutamine efflux rate jm equals 85.6 +/- 9.5 (SE) mumol.l-1 x min-1 in all animals. No difference in jm was observed in metabolic alkalosis or acidosis. Mean cerebral cortical glutamate concentration was significantly lower in acidosis [7.01 +/- 0.45 (SE) mumol/g brain tissue] and tended to be larger in alkalosis, compared with 7.97 +/- 0.89 mumol/g in normal acid-base conditions. There was a similar change in cerebral cortical gamma-aminobutyric acid concentration. Within the limits of the present method and measurements, the results suggest that acute metabolic acidosis but not alkalosis reduces glial glutamine efflux, corresponding to changes in cerebral cortical glutamate metabolism. These results suggest that glutamatergic mechanisms may contribute to central respiratory control in metabolic acidosis.  相似文献   

19.
The metabolic effects of beta-(+/-)-2-aminobicyclo-(2.2.1)-heptane-2-carboxylic acid (BCH), a nonmetabolizable analog of leucine and known activator of glutamate dehydrogenase, were studied in hepatocytes isolated from fed and fasted rats. With glutamine as substrate, BCH stimulated in a concentration-dependent manner urea synthesis in both physiological states and glucose formation in hepatocytes from fasted rats. Despite the much higher rates of ureagenesis in the fasted animals, the degree of stimulation by BCH, over 2-fold, was similar. The effect of the drug was specific for glutamine since the rates of urea synthesis from NH4Cl, alanine, and asparagine were essentially unaltered. The stimulation of glutamine catabolism by BCH led to a decrease in the content of intracellular glutamine. The redox states of the mitochondrial and cytosolic nicotinamide adenine dinucleotides remained unaltered. In hepatocytes isolated from fasted rats and incubated with 5 mM glutamine the BCH-induced increases in urea, ammonia, and the amino acids, glutamate, aspartate, and alanine, accounted fully for the 2.4-fold rise in glutamine utilization. The stimulatory effects of BCH and glucagon on the formation of glucose, urea, and 14CO2 from [U-14C]glutamine were additive. Aminooxyacetate, and inhibitor of transaminases, neither blocked glutamine catabolism (as measured by the sum of urea, ammonia, and glutamate) nor prevented its activation by BCH. It is suggested that, in isolated hepatocytes, BCH-induced stimulation of glucose and urea formation from glutamine results from activation of glutaminase by a mechanism which is distinct from that of glucagon.  相似文献   

20.
Rates of glutamine formation and of carbon dioxide production (as an indication of oxidative deamination of glutamate) were determined in primary cultures of astrocytes exposed to 50 microM labeled glutamate in the absence or presence of added ammonia (0.1-3 mM). Glutamine formation (1.7 nmol/min/mg protein) was unaffected by all concentrations of added ammonia. This probably reflects the presence of a low content of ammonia (0.1-0.2 mM), originating from degradation of glutamine, in the cells even in the absence of added ammonia, and it shows that pathophysiological concentrations of ammonia do not increase the formation of glutamine from exogenous glutamate. The carbon dioxide production rate was 5.9 nmol/min/mg protein, i.e., three to four times higher than the rate of glutamine formation. It was significantly reduced (to 3.5 nmol/min/mg protein) in the presence of 1 mM or more of ammonia. This is in keeping with suggestions by others that toxic levels of ammonia affect oxidative metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号