首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Hematopoietic stem cells have the potential to develop into multipotent and different lineage-restricted progenitor cells that subsequently generate all mature blood cell types. The classical model of hematopoietic lineage commitment proposes a first restriction point at which all multipotent hematopoietic progenitor cells become committed either to the lymphoid or to the myeloid development, respectively. Recently, this model has been challenged by the identification of murine as well as human hematopoietic progenitor cells with lymphoid differentiation capabilities that give rise to a restricted subset of the myeloid lineages. As the classical model does not include cells with such capacities, these findings suggest the existence of alternative developmental pathways that demand the existence of additional branches in the classical hematopoietic tree. Together with some phenotypic criteria that characterize different subsets of multipotent and lineage-restricted progenitor cells, we summarize these recent findings here.  相似文献   

2.
胚胎干细胞向造血干/祖细胞定向诱导分化的研究进展   总被引:1,自引:0,他引:1  
胚胎干细胞(embryonic stem cell,ES细胞)是指由胚胎内细胞团(inner cell mass,ICM)细胞经体外抑制培养而筛选得到的细胞,具有无限增殖潜能,在体外可以向造血细胞分化,有可能为造血干细胞移植和血细胞输注开辟新的来源.此外,ES细胞向造血干/祖细胞的定向诱导分化也为阐明哺乳动物造血发育的细胞和分子机制提供了良好的体外模型.对ES细胞向造血干/祖细胞定向分化的研究进展进行了综述.  相似文献   

3.
An ultimate goal of gene therapy is the development of a means to correct mutant genomic sequences in the cells that give rise to pathology. A number of oligonucleotide-based gene-targeting strategies have been developed to achieve this goal. One approach, small fragment homologous replacement (SFHR), has previously demonstrated disease-specific genotypic and phenotypic modification after introduction of small DNA fragments (SDFs) into somatic cells. To validate whether the gene responsible for sickle cell anemia (beta-globin) can be modified by SFHR, a series of studies were undertaken to introduce sickle globin sequences at the appropriate locus of human hematopoietic stem/progenitor cells (HSPCs). The characteristic A two head right arrow T transversion in codon 6 of the beta-globin gene was indicated by restriction fragment length polymorphic (RFLP) analysis of polymerase chain reaction (PCR) products generated by amplification of DNA and RNA. At the time of harvest, it was determined that the cells generally contained 相似文献   

4.
5.
6.
Adult stem cells are critical for maintaining cellular homeostasis throughout life, yet the effects of age on their regenerative capacity are poorly understood. All lymphoid and myeloid blood cell lineages are continuously generated from hematopoietic stem cells present in human bone marrow. With age, significant changes in the function and composition of mature blood cells are observed. In this study, we report that age-related changes also occur in the human hematopoietic stem cell compartment. We find that the proportion of multipotent CD34(+) CD38(-) cells increases in the bone marrow of elderly (>70 years) individuals. CD34(+) CD38(+) CD90(-) CD45RA(+/-) CD10(-) and CD34(+) CD33(+) myeloid progenitors persist at the same level in the bone marrow, while the frequency of early CD34(+) CD38(+) CD90(-) CD45RA(+) CD10(+) and committed CD34(+) CD19(+) B-lymphoid progenitors decreases with age. In contrast to mice models of aging, transplantation experiments with immunodeficient NOD/SCID/IL-2Rγ null (NSG) mice showed that the frequency of NSG repopulating cells does not change significantly with age, and there is a decrease in myeloid lineage reconstitution. An age-related decrease in the capacity of CD34(+) cells to generate myeloid cells was also seen in colony-forming assays in vitro. Thus, with increasing age, human hematopoietic stem/progenitor cells undergo quantitative changes as well as functional modifications.  相似文献   

7.
This study aimed to investigate the significance of cytokine expression in supernatant from hematopoietic stem/progenitor cells (HSCs/HPCs) co-cultured with mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs). Mononuclear cells (MNCs) were isolated from normal human umbilical cord blood and then cultured solely or co-cultured with MSCs or EPCs. Changes in the number of MNCs and HSCs/HPCs were observed, and MNC proliferation was tested by carboxyfluorescein diacetate succinimidyl ester. The cultured supernatants of the treated MSCs and EPCs were collected at 24 h after co-culture and used to determine the concentrations of IL-3, IL-6, stem cell factor (SCF), TPO, Flt3l, and VEGF. The total number and proliferation of MNCs increased significantly when co-cultured with MSCs or EPCs than when cultured alone, particularly when MNCs were co-cultured with EPCs. The differences in IL-3 and Flt3l concentrations between groups were not significant. However, IL-6 in the MSC group was significantly higher than that in the two other groups. The SCF and TPO concentrations were highly expressed in the EPC group. The VEGF concentrations in the MSC group and the EPC group were higher than those in the control group. These results indicated that MSCs and EPCs possibly favor the proliferation of MNCs and HSCs/HPCs. IL-6 and VEGF may be related to hematopoietic reconstitution and homing ability of HSCs/HPCs. TPO may have a specific relationship with the promotion of HSCs/HPCs differentiation.  相似文献   

8.
The members of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (pp-GalNAc-T) family, which transfer GalNAc to polypeptide serine and threonine residues, initiate mucin-type O-linked glycosylation. There are at least 13 functionally characterized members of this family in humans, but no studies have been reported of pp-GalNAc-T isoforms in hematopoietic cells. We isolated and purified CD34+ hematopoietic cells from adult bone marrow by magnetic cell sorting and induced them to differentiate into megakaryocytic lineage cells using an optimal combination of hematopoietic growth factors in serum-free liquid medium. RT-PCR revealed that CD34+ cells expressed pp-GalNAc-T1, T2, T3, T4, T6, T7, T10, T11 and T14, but not pp-GalNAc-T8, T9, T12 and T13. The megakaryocytic lineage cells showed significant increases in the expression of pp-GalNAc-T3, T8, T9, T10 and T13, but pp-GalNAc-T11 and T14 became undetectable. In summary, many pp-GalNAc-T isoforms were expressed in CD34+ cells but the expression pattern changed during differentiation into megakaryocytes. The expression patterns of pp-GalNAc-Ts may be necessary to ensure proper O-glycosylation of mucin-type proteins expressed in CD34+ and megakaryocytic cells.  相似文献   

9.
Clustered DNA damages-multiple oxidized bases, abasic sites, or strand breaks within a few helical turns-are potentially mutagenic and lethal alterations induced by ionizing radiation. Endogenous clusters are found at low frequencies in unirradiated normal human cells and tissues. Radiation-sensitive hematopoietic cells with low glycosylase levels (TK6 and WI-L2-NS) accumulate oxidized base clusters but not abasic clusters, indicating that cellular repair genotype affects endogenous cluster levels. We asked whether other factors, i.e., in the cellular microenvironment, affect endogenous cluster levels and composition in hematopoietic cells. TK6 and WI-L2-NS cells were grown in standard medium (RPMI 1640) alone or supplemented with folate and/or selenium; oxidized base cluster levels were highest in RPMI 1640 and reduced in selenium-supplemented medium. Abasic clusters were low under all conditions. In primary hematopoietic stem and progenitor cells from four non-tobacco-using donors, cluster levels were low. However, in cells from tobacco users, we observed high oxidized base clusters and also abasic clusters, previously observed only in irradiated cells. Protein levels and activity of the abasic endonuclease Ape1 were similar in the tobacco users and nonusers. These data suggest that in highly damaging environments, even normal DNA repair capacity can be overwhelmed, leaving highly repair-resistant clustered damages.  相似文献   

10.
Flow cytometric enumeration of CD34+ hematopoietic stem and progenitor cells (HPC) is widely used for evaluation of graft adequacy of peripheral blood stem cell grafts, and is also useful in planning the apheresis sessions necessary to obtain these grafts. The state-of-the-art method to enumerate CD34+ cells makes use of a multiparameter definition of HPC based on their light scatter characteristics and dim expression of CD45, and the use of counting beads to derive the concentration of CD34+ cells directly from the flow cytometric assessment. This method can be extended with a viability stain and additional markers for further immunological characterization of CD34+ cells, and has been successfully implemented in multicenter trials. Thus, the lower threshold of a safe HPC graft in terms of short- and long-term hematopoiesis may be more accurately defined.  相似文献   

11.
A variety of G protein-coupled receptors (GPCRs) is expressed in hematopoietic stem and progenitor cells (HPCs), including the chemokine receptor CXCR4, the leukotriene receptor CysLT1, the sphingosine 1-phosphate receptor S1P1, the cannabinoid receptor CB2, and the complement receptor C3aR. While the role of CXCR4 in stem cell homing is largely established, the function of the other GPCRs expressed in HPCs is only partially understood. CXCR4 and CysLT1 inhibit their own activation after ligand binding (homologous desensitization). Stimulation of S1P1 or C3aR has been shown to activate CXCR4 in HPCs that may sensitize CXCR4-dependent stem cell homing. In contrast, activation of CXCR4 results in a loss of CysLT1 function, which is most likely mediated by protein kinase C (PKC) signaling (heterologous desensitization) and could explain the ineffectiveness of CysLT1 antagonists to mobilize HPCs in vivo. Further characterization of GPCR crosstalk will allow a better understanding of HPC trafficking.  相似文献   

12.
13.
14.
Three important goals of hematopoietic stem cell research are to understand of how hematopoietic stem cells (HSCs) self-renew, how lineage commitment takes place, and how HSCs can be expanded ex vivo. Research in this area requires a reliable model of hematopoiesis. Performing detailed functional analyses of human hematopoietic progenitor subsets, we recently gained evidence for new hematopoietic lineage relationships.1 According to our data, neutrophils belong to the same branch of the hematopoietic tree as lymphocytes. In contrast, eosinophils and basophils derive from another branch, the erythro-myeloid branch. Here, after introducing the newly proposed hematopoietic model, we discuss its consequences for the identification and expansion of human multipotent progenitors and suggest a fast and reliable method to screen for multipotent hematopoietic cells in vitro.  相似文献   

15.
Kiel MJ  Yilmaz OH  Iwashita T  Yilmaz OH  Terhorst C  Morrison SJ 《Cell》2005,121(7):1109-1121
To improve our ability to identify hematopoietic stem cells (HSCs) and their localization in vivo, we compared the gene expression profiles of highly purified HSCs and non-self-renewing multipotent hematopoietic progenitors (MPPs). Cell surface receptors of the SLAM family, including CD150, CD244, and CD48, were differentially expressed among functionally distinct progenitors. HSCs were highly purified as CD150(+)CD244(-)CD48(-) cells while MPPs were CD244(+)CD150(-)CD48(-) and most restricted progenitors were CD48(+)CD244(+)CD150(-). The primitiveness of hematopoietic progenitors could thus be predicted based on the combination of SLAM family members they expressed. This is the first family of receptors whose combinatorial expression precisely distinguishes stem and progenitor cells. The ability to purify HSCs based on a simple combination of SLAM receptors allowed us to identify HSCs in tissue sections. Many HSCs were associated with sinusoidal endothelium in spleen and bone marrow, though some HSCs were associated with endosteum. HSCs thus occupy multiple niches, including sinusoidal endothelium in diverse tissues.  相似文献   

16.
Cell adhesion and migration are important determinants of homing and development of hematopoietic stem and progenitor cells (HSPCs) in bone marrow (BM) niches. The extracellular matrix protein transforming growth factor-β (TGF-β) inducible gene H3 (BIGH3) is involved in adhesion and migration, although the effect of BIGH3 is highly cell type-dependent. BIGH3 is abundantly expressed by mesenchymal stromal cells, while its expression in HSPCs is relatively low unless induced by certain BM stressors. Here, we set out to determine how BIGH3 modulates HSPC adhesion and migration. We show that primary HSPCs adhere to BIGH3-coated substrates, which is, in part, integrin-dependent. Overexpression of BIGH3 in HSPCs and HL60 cells reduced the adhesion to the substrate fibronectin in adhesion assays, which was even more profound in electrical cell-substrate impedance sensing (ECIS) assays. Accordingly, the CXCL12 induced migration over fibronectin-coated surface was reduced in BIGH3-expressing HSPCs. The integrin expression profile of HSPCs was not altered upon BIGH3 expression. Although expression of BIGH3 did not alter actin polymerization in response to CXCL12, it inhibited the PMA-induced activation of the small GTPase RAC1 as well as the phosphorylation and activation of extracellular-regulated kinases (ERKs). Reduced activation of ERK and RAC1 may be responsible for the inhibition of cell adhesion and migration by BIGH3 in HSPCs. Induced BIGH3 expression upon BM stress may contribute to the regulation of BM homeostasis.  相似文献   

17.

Background

Accumulation of DNA damage leading to adult stem cell exhaustion has been proposed to be a principal mechanism of aging. Here we tested this hypothesis in healthy individuals of different ages by examining unrepaired DNA double-strand breaks (DSBs) in hematopoietic stem/progenitor cells matured in their physiological microenvironment.

Methodology/Principal Findings

To asses DNA damage accumulation and repair capacities, γH2AX-foci were examined before and after exposure to ionizing irradiation. Analyzing CD34+ and CD34− stem/progenitor cells we observed an increase of endogenous γH2AX-foci levels with advancing donor age, associated with an age-related decline in telomere length. Using combined immunofluorescence and telomere-fluorescence in-situ hybridization we show that γH2AX-foci co-localize consistently with other repair factors such as pATM, MDC1 and 53BP1, but not significantly with telomeres, strongly supporting the telomere-independent origin for the majority of foci. The highest inter-individual variations for non-telomeric DNA damage were observed in middle-aged donors, whereas the individual DSB repair capacity appears to determine the extent of DNA damage accrual. However, analyzing different stem/progenitor subpopulations obtained from healthy elderly (>70 years), we observed an only modest increase in DNA damage accrual, most pronounced in the primitive CD34+CD38−-enriched subfraction, but sustained DNA repair efficiencies, suggesting that healthy lifestyle may slow down the natural aging process.

Conclusions/Significance

Based on these findings we conclude that age-related non-telomeric DNA damage accrual accompanies physiological stem cell aging in humans. Moreover, aging may alter the functional capacity of human stem cells to repair DSBs, thereby deteriorating an important genome protection mechanism leading to exceeding DNA damage accumulation. However, the great inter-individual variations in middle-aged individuals suggest that additional cell-intrinsic mechanisms and/or extrinsic factors contribute to the age-associated DNA damage accumulation.  相似文献   

18.
Conditional activation and inactivation of genes using the Cre/loxP recombination system is a powerful tool for the analysis of gene function and for tracking cell fate. Here we report a novel silent EGFP reporter mouse line generated by enhancer trap technology using embryonic stem (ES) cells. Following transfection with the silent EGFP reporter construct, positive ES cell clones were treated with Cre recombinase. These "activated clones" were then further selected on the basis of ubiquitous EGFP expression during in vitro differentiation. The parental "silent" clones were then used for generating mice. Upon Cre-mediated activation in ovo tissues tested from these mice express EGFP. Long-term, strong and sustainable expression of EGFP is observed in most myeloid and lymphoid cells. As shown by in vivo transplantation assays, the majority of hematopoietic stem cells (HSCs) and spleen colony-forming units (CFU-S) reside within the EGFP positive fraction. Most in vitro colony-forming units (CFU-Cs) isolated from bone marrow also express EGFP. Thus, these reporter mice are useful for the analysis of Cre-mediated recombination in HSCs and hematopoietic progenitor cells. This, in combination with the high accessibility of the loxP sites, makes these mice a valuable tool for testing cell/tissue-specific Cre-expressing mice. .  相似文献   

19.
While it is clear that a single hematopoietic stem cell?(HSC) is capable of giving rise to all other hematopoietic cell types, the differentiation paths beyond HSC remain controversial. Contradictory reports on?the lineage potential of progenitor populations have questioned their physiological contribution of progenitor populations to multilineage differentiation. Here, we established a lineage tracing mouse model that enabled direct assessment of differentiation pathways in?vivo. We provide definitive evidence that differentiation into all hematopoietic lineages, including megakaryocyte/erythroid cell types, involves Flk2-expressing non-self-renewing progenitors. A Flk2+ stage was used during steady-state hematopoiesis, after irradiation-induced stress and upon HSC transplantation. In contrast, HSC origin and maintenance do not include a Flk2+ stage. These data demonstrate that HSC specification and maintenance are Flk2 independent, and that hematopoietic lineage separation occurs downstream of Flk2 upregulation.  相似文献   

20.
In this study, we employed bio-derived bone scaffold and composited with the marrow mesenchymal stem cell induced into osteoblast to replicate a “biomimetic niche.” The CD34+ cells or mononuclear cells (MNC) from umbilical cord blood were cultured for 2–5 weeks in the biomimetic niche (3D system) was compared with conventional two dimensional cultures (2D system) without adding cytokine supplement. After 2 weeks in culture, the CD34+ cells from umbilical cord blood in the 3D system increased 3.3–4.8 folds when compared with the initial CD34+ cells. CD34+/CD38 cells accounted for 82–90% of CD34+ cells. After 5 weeks, CD34+/CD38 cells in the 3D system increased when compared with initial (1.3 ± 0.3 × 103 vs. 1.0 ± 0.5 × 104, p < 0.05), but were decreased in the 2D system (1.3 ± 0.3 × 103 vs. 2.5 ± 0.7 × 102, p < 0.05). The CFU progenitors were produced more in the 3D system than in the 2D system (4.6–9.3 folds vs. 1.0–1.5 folds) after 2 weeks in culture, and the colony distribution in the 3D system manifested higher percentage of BFU-E and CFU-GEMM, but in the 2D system was mainly CFU-GM. The LTC-ICs in the 3D system showed 5.2–7.2 folds increase over input at 2 weeks in culture, and maintain the immaturation of hematopoietic progenitor cells (HPCs) over 5 weeks. In conclusion, this new 3D hematopoietic progenitor cell culture system is the first to utilize natural cancellous bone as scaffold with osteoblasts as supporting cells; it is mimicry of natural bone marrow HSC niche. Our primary work has demonstrated it could maintain and expand HSC/HPC in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号