首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: There is accumulating evidence of aberrant expression of miR-143 and miR-145 and their target gene KRAS in colorectal cancer (CRC). We hypothesize that single nucleotide polymorphisms (SNPs) within or near mRNA–microRNA (miRNA) binding sites may affect miRNA/target gene interaction, resulting in differential mRNA/protein expression and promoting the development and progression of CRC. Methods: We conducted a case–control study of 507 patients with CRC recruited from a tertiary hospital and 497 population-based controls to assess the association of genetic polymorphisms in miR-143/145 and the KRAS 3′ untranslated region (3′UTR) with susceptibility to CRC and patients’ survival. In addition, genetic variations of genomic regions located from 500 bp upstream to 500 bp downstream of the miR-143/miR-145 gene and the 3′UTR of KRAS were selected for analysis using the Haploview and HaploReg software. Results: Using publicly available expression profiling data, we found that miR-143/145 and KRAS expression were all reduced in rectal cancer tissue compared with adjacent non-neoplastic large intestinal mucosa. The rs74693964 C/T variant located 65 bp downstream of miR-145 genomic regions was observed to be associated with susceptibility to CRC (adjusted odds ratio (OR): 2.414, 95% CI: 1.385–4.206). Cumulative effects of miR-143 and miR-145 on CRC risk were observed (Ptrend=0.03). Patients having CRC carrying variant genotype TT of KRAS rs712 had poorer survival (log-rank P=0.044, adjusted hazard ratio (HR): 4.328, 95% CI: 1.236–15.147). Conclusions: Our results indicate that miRNA-related polymorphisms in miR-143/145 and KRAS are likely to be deleterious and represent potential biomarkers for susceptibility to CRC and patients’ survival.  相似文献   

2.
High-throughput chromatin immunoprecipitation has become the method of choice for identifying genomic regions bound by a protein. Such regions are then investigated for overrepresented sequence motifs, the assumption being that they must correspond to the binding specificity of the profiled protein. However this approach often fails: many bound regions do not contain the ‘expected’ motif. This is because binding DNA directly at its recognition site is not the only way the protein can cause the region to immunoprecipitate. Its binding specificity can change through association with different co-factors, it can bind DNA indirectly, through intermediaries, or even enforce its function through long-range chromosomal interactions. Conventional motif discovery methods, though largely capable of identifying overrepresented motifs from bound regions, lack the ability to characterize such diverse modes of protein–DNA binding and binding specificities. We present a novel Bayesian method that identifies distinct protein–DNA binding mechanisms without relying on any motif database. The method successfully identifies co-factors of proteins that do not bind DNA directly, such as mediator and p300. It also predicts literature-supported enhancer–promoter interactions. Even for well-studied direct-binding proteins, this method provides compelling evidence for previously uncharacterized dependencies within positions of binding sites, long-range chromosomal interactions and dimerization.  相似文献   

3.
4.
5.
6.
7.
Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. To overcome this, we have developed DiCre, a regulatable fragment complementation system for Cre. The enzyme was split into two moieties that were fused to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12–rapamycin-associated protein), respectively. These can be efficiently heterodimerized by rapamycin. Several variants, based on splitting Cre at different sites and using different linker peptides, were tested in an indicator cell line. The fusion proteins, taken separately, had no recombinase activity. Stable transformants, co-expressing complementing fragments based on splitting Cre between Asn59 and Asn60, displayed low background activity affecting 0.05–0.4% of the cells. Rapamycin induced a rapid recombination, reaching 100% by 48–72 h, with an EC50 of 0.02 nM. Thus, ligand-induced dimerization can efficiently regulate Cre, and should be useful to achieve a tight temporal control of its activity, such as in the case of the creation of conditional knock-out animals.  相似文献   

8.
Cyclin D1 is expressed at abnormally high levels in many cancers and has been specifically implicated in the development of breast cancer. In this report we have extensively analyzed the cyclin D1 promoter in a variety of cancer cell lines that overexpress the protein and identified two critical regulatory elements (CREs), a previously identified CRE at –52 and a novel site at –30. In vivo footprinting experiments demonstrated factors binding at both sites. We have used a novel DNA-binding ligand, GL020924, to target the site at –30 (–30–21) of the cyclin D1 promoter in MCF7 breast cancer cells. A binding site for this novel molecule was constructed by mutating 2 bp of the wild-type cyclin D1 promoter at the –30–21 site. Treatment with GL020924 specifically inhibited expression of the targeted cyclin D1 promoter construct in MCF7 cells in a concentration-dependent manner, thus validating the –30–21 site as a target for minor groove-binding ligands. In addition, this result validates our approach to regulating the expression of genes implicated in disease by targeting small DNA-binding ligands to key regulatory elements in the promoters of those genes.  相似文献   

9.
A growing variety of “genotype-by-sequencing” (GBS) methods use restriction enzymes and high throughput DNA sequencing to generate data for a subset of genomic loci, allowing the simultaneous discovery and genotyping of thousands of polymorphisms in a set of multiplexed samples. We evaluated a “double-digest” restriction-site associated DNA sequencing (ddRAD-seq) protocol by 1) comparing results for a zebra finch (Taeniopygia guttata) sample with in silico predictions from the zebra finch reference genome; 2) assessing data quality for a population sample of indigobirds (Vidua spp.); and 3) testing for consistent recovery of loci across multiple samples and sequencing runs. Comparison with in silico predictions revealed that 1) over 90% of predicted, single-copy loci in our targeted size range (178–328 bp) were recovered; 2) short restriction fragments (38–178 bp) were carried through the size selection step and sequenced at appreciable depth, generating unexpected but nonetheless useful data; 3) amplification bias favored shorter, GC-rich fragments, contributing to among locus variation in sequencing depth that was strongly correlated across samples; 4) our use of restriction enzymes with a GC-rich recognition sequence resulted in an up to four-fold overrepresentation of GC-rich portions of the genome; and 5) star activity (i.e., non-specific cutting) resulted in thousands of “extra” loci sequenced at low depth. Results for three species of indigobirds show that a common set of thousands of loci can be consistently recovered across both individual samples and sequencing runs. In a run with 46 samples, we genotyped 5,996 loci in all individuals and 9,833 loci in 42 or more individuals, resulting in <1% missing data for the larger data set. We compare our approach to similar methods and discuss the range of factors (fragment library preparation, natural genetic variation, bioinformatics) influencing the recovery of a consistent set of loci among samples.  相似文献   

10.
11.
12.
Eukaryotic cells commonly use protein kinases in signaling systems that relay information and control a wide range of processes. These enzymes have a fundamentally similar structure, but achieve functional diversity through variable regions that determine how the catalytic core is activated and recruited to phosphorylation targets. “Hippo” pathways are ancient protein kinase signaling systems that control cell proliferation and morphogenesis; the NDR/LATS family protein kinases, which associate with “Mob” coactivator proteins, are central but incompletely understood components of these pathways. Here we describe the crystal structure of budding yeast Cbk1–Mob2, to our knowledge the first of an NDR/LATS kinase–Mob complex. It shows a novel coactivator-organized activation region that may be unique to NDR/LATS kinases, in which a key regulatory motif apparently shifts from an inactive binding mode to an active one upon phosphorylation. We also provide a structural basis for a substrate docking mechanism previously unknown in AGC family kinases, and show that docking interaction provides robustness to Cbk1’s regulation of its two known in vivo substrates. Co-evolution of docking motifs and phosphorylation consensus sites strongly indicates that a protein is an in vivo regulatory target of this hippo pathway, and predicts a new group of high-confidence Cbk1 substrates that function at sites of cytokinesis and cell growth. Moreover, docking peptides arise in unstructured regions of proteins that are probably already kinase substrates, suggesting a broad sequential model for adaptive acquisition of kinase docking in rapidly evolving intrinsically disordered polypeptides.  相似文献   

13.
Peroxisomes and the endoplasmic reticulum (ER) cooperate in cellular lipid metabolism. They form membrane contacts through interaction of the peroxisomal membrane protein ACBD5 (acyl-coenzyme A–binding domain protein 5) and the ER-resident protein VAPB (vesicle-associated membrane protein–associated protein B). ACBD5 binds to the major sperm protein domain of VAPB via its FFAT-like (two phenylalanines [FF] in an acidic tract) motif. However, molecular mechanisms, which regulate formation of these membrane contact sites, are unknown. Here, we reveal that peroxisome–ER associations via the ACBD5-VAPB tether are regulated by phosphorylation. We show that ACBD5-VAPB binding is phosphatase-sensitive and identify phosphorylation sites in the flanking regions and core of the FFAT-like motif, which alter interaction with VAPB—and thus peroxisome–ER contact sites—differently. Moreover, we demonstrate that GSK3β (glycogen synthase kinase-3 β) regulates this interaction. Our findings reveal for the first time a molecular mechanism for the regulation of peroxisome–ER contacts in mammalian cells and expand the current model of FFAT motifs and VAP interaction.  相似文献   

14.
15.
Several classes of specific progesterone receptor (PR) nuclear binding sites (acceptor sites) have previously been identified in avian oviduct chromatin on the basis of different binding affinities. Recently, two classes of acceptor proteins (AP) that are associated with these binding sites in the avian oviduct have been identified. These APs were termed receptor binding factors (RBF-1 and -2), and one (RBF-1) has been purified [Schuchard et al. (1991) Biochemistry 30, 4535-4542]. The RBF-1 is associated with the highest affinity class of sites in the intact chromatin, and the RBF-2 is associated with the second highest affinity class of sites. The PR binding sites and their associated RBF-2 protein remain with the residual chromatin fraction following extraction by 4 M Gdn-HCl. This Gdn-HCl-treated chromatin has been termed nucleoacidic protein (NAP). This paper describes the 200-fold enrichment of the native RBF-2 class of PR acceptor sites beginning with the DNase I digestion of NAP to obtain DNase-resistant fragment (NAPf) containing approximately 150 bp of DNA. The PR binding sites are further enriched by high-performance or fast protein liquid chromatography and chromatofocusing. Anti-RBF-1/RBF-2 protein antibodies identify antigens that coelute with the PR binding activity. Hybridization analysis of the DNAf from the enriched NAPf demonstrates sequence homologies with the nuclear matrix DNA as well as with genomic sequences of the rapid steroid responding nuclear protooncogenes c-myc and c-jun. However, comparative analyses of the whole genomic DNA with the nuclear matrix DNA indicate that the RBF-2 (NAPf) is largely nonnuclear matrix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The condensin SMC protein complex organizes chromosomal structure by extruding loops of DNA. Its ATP-dependent motor mechanism remains unclear but likely involves steps associated with large conformational changes within the ∼50 nm protein complex. Here, using high-resolution magnetic tweezers, we resolve single steps in the loop extrusion process by individual yeast condensins. The measured median step sizes range between 20–40 nm at forces of 1.0–0.2 pN, respectively, comparable with the holocomplex size. These large steps show that, strikingly, condensin typically reels in DNA in very sizeable amounts with ∼200 bp on average per single extrusion step at low force, and occasionally even much larger, exceeding 500 bp per step. Using Molecular Dynamics simulations, we demonstrate that this is due to the structural flexibility of the DNA polymer at these low forces. Using ATP-binding-impaired and ATP-hydrolysis-deficient mutants, we find that ATP binding is the primary step-generating stage underlying DNA loop extrusion. We discuss our findings in terms of a scrunching model where a stepwise DNA loop extrusion is generated by an ATP-binding-induced engagement of the hinge and the globular domain of the SMC complex.  相似文献   

17.
18.
Previous experiments have identified a 657-bp restriction fragment in the non-transcribed region of the Drosophila histone gene cluster that is specifically associated with the histone-depleted nuclear scaffold. The remaining fragments of the 5-kb histone repeat were shown to be readily released from the scaffold; hence it was proposed that the tandemly repeated cluster of histone genes forms a series of 5-kb loops restrained by a nuclear substructure at the sites of attachment. Here we show that the attachment fragment is tightly associated with protease-sensitive material, whereas the solubilized fragments are relatively protein-free. Exonuclease III digestion has been used to map the location of protein complexes on the attachment fragment. We have defined two regions of ~200 bp whose borders provide kinetic barriers to exonuclease III degradation. They are separated by a nucleaseaccessible region of ~100 bp. The protected regions are sufficient to mediate association of the fragment with the histonedepleted nuclei. Sequence analysis reveals an enrichment for sequences closely related to the topoisomerase II cleavage consensus in these two domains.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号