首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trimethylamine dehydrogenase (TMADH, EC 1.5.99.7), an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde, was purified fromMethylophaga sp. strain SK1. The active TMADH was purified 12.3-fold through three purification steps. The optimal pH and temperature for enzyme activity was determined to be 8.5 and 55°C, respectively. TheV max andK m values were 7.9 nmol/min/mg protein and 1.5 mM. A genomic DNA of 2,983 bp fromMethylophaga sp. strain SK1 was cloned, and DNA sequencing revealed the open reading frame (ORF) of the gene coding for TMADH. The ORF contained 728 amino acids with extensive identity (82%) to that ofMethylophilus methylotrophus W3A1.  相似文献   

2.
Trimethylamine dehydrogenases from bacterium W3A1 and Hyphomicrobium X and the dimethylamine dehydrogenase from Hyphomicrobium X were found to contain only one kind of subunit. The millimolar absorption coefficient of a single [4Fe-4S] cluster in trimethylamine dehydrogenase from bacterium W3A1 was estimated to be 14.8 mM-1 . cm-1 at 443 nm. From this value a 1:1 stoicheiometry of the prosthetic groups, 6-S-cysteinyl-FMN and the [4Fe-4S] cluster, was established. Millimolar absorption coefficients of the three enzymes were in the range 49.4-58.7 mM-1 . cm-1 at approx. 440 nm. This range of values is consistent with the presence of two [4Fe-4S] clusters and two flavin residues, for which the millimolar absorption coefficient had earlier been found to be 12.3 mM-1 . cm-1 at 437 nm. The N-terminal amino acid was alanine in each of the three enzymes. Sequence analysis of the first 15 residues from the N-terminus of dimethylamine dehydrogenase indicated a single unique sequence. Two identical subunits, each containing covalently bound 6-S-cysteinyl-FMN and a [4Fe-4S] cluster, in each of the enzymes are therefore indicated.  相似文献   

3.
Ferredoxin from the strict rumen anaerobe Selenomonas ruminantium has been purified to homogeneity and characterized with respect to its molecular weight and amino acid composition. The molecular weight of ferredoxin was 9,880. The A380/A280 absorbance ratio of the pure ferredoxin was 0.54 with a molar extinction coefficient of 31,000 M-1 cm-1 at 380 nm. Ferredoxin was reduced by cell-free extracts in the presence of hydrogen gas or pyruvate and acetyl coenzyme A.Abbreviations [Fex/Sy] denotes an iron sulfur cluster containing x iron and y sulfur atoms  相似文献   

4.
The pyruvate dehydrogenase multienzyme complex was purified from B. stearothermophilus. The enzyme was found to be of high molecular weight (s20,w0 = 75S) and to contain four different types of polypeptide chain, with subunit molecular weights estimated as 57,000, 54,000, 42,000 and 36,000, respectively. The subunit of molecular weight 57,000 was shown to derive from the lipoate acetyltransferase component (EC 2.3.1.12), whereas the subunit of molecular weight 54,000 was identified as lipoamide dehydrogenase (EC 1.6.4.3). The other two polypeptide chains are likely to be the subunits of pyruvate decarboxylase (EC 1.2.4.1). The purified lipoate acetyltransferase component was also of high molecular weight (s20,w0 = 35S), and both it and the intact enzyme complex were readily visualized in negatively-stained preparations in the electron microscope. The lipoate acetyltransferase component, in particular, clearly showed the 5 fold, 3 fold and 2 fold rotation axes of a regular pentagonal dodecahedron with a diameter of 23 nm. The symmetry of the enzyme complex is apparently icosahedral. In all these properties the enzyme from B. stearothermophilus (Gram-positive) strikingly resembles the pyruvate dehydrogenase complex from the mitochondria of eucaryotic cells, and stands in marked contrast to the enzyme from E. coli (Gram-negative). A growing body of evidence indicates that the quaternary structures of enzymes from Gram-positive bacteria and the mitochondria of eucaryotes share distinctive common features that set them apart from the corresponding enzymes from Gram-negative bacteria. Adopting the serial endosymbiosis theory for the evolution of the mitochondrion, it follows that the forerunner of mitochondria may have been a Gram-positive rather than a Gram-negative bacterium.  相似文献   

5.
Polyethylene glycol (PEG) 4000-utilizing bacterium no. 203 was identified as a Flavobacterium species. 2, 6-Dichlorophenol-indophenol (DCIP)-dependent PEG dehydrogenase was constitutively formed in nutrient broth, glucose and PEG media. However, the enzyme formation was repressed in the presence of an excess amount (over 0.25%) of PEG 400 or 1000. PEG dehydrogenase was purified approximately 34 fold by precipitation with ammonium sulfate, solubilization with benzalkonium chloride, chromatography with DEAE-Toyopearl 650 M and hydroxylapatite and gel filtration on Toyopearl HW-55. The molecular weight of the purified PEG dehydrogenase was calculated to be approximately 2.20 × 105, a value which seemed to consist of four subunits with the same molecular weight of 5.70 × 104. The enzyme was stable below 40°C and in the pH range of 7.0 and 8.0. The optimum pH and temperature of the activity were around 8.0 and 40°C, respectively. The enzyme reduced DCIP and coenzyme Q1 and Q2. PEG dehydrogenase showed activity toward various PEG molecules (dimer-PEG 20,000). The apparent Km values for PEG 400, 1000, 4000 and 6000 were about 1.0, 1.7, 2.8 and 5.9 mM, respectively. The enzyme oxidized primary aliphatic alcohols of C3–C12, the corresponding aldehydes of C3–C7, aromatic alcohols and aldehydes, diols, etc. The enzyme was inactive on ethylene glycol, glycerol, secondary alcohols and sugar alcohols. The enzyme activity was strongly inhibited by sulfhydryl agents or heavy metals and 1, 4-benzoquinone. The purified enzyme showed absorption apectrum similar to that of PEG 6000 dehydrogenase which has already been reported to be a quinoprotein. The prosthetic group of the enzyme was extracted with methanol and identified as PQQ from its prosthetic group capability for glucose dehydrogenase and the fluorescence spectrum.  相似文献   

6.
Two NAD-dependent aldehyde dehydrogenase enzymes from rat liver mitochondria have been partially purified and characterized. One enzyme (enzyme I) has molecular weight of 320,000 and has a broad substrate specificity which includes formaldehyde; NADP is not a cofactor for this enzyme. This enzyme has Km values for most aldehydes in the micromolar range. The isoelectric point was found to be 6.06. A second enzyme (enzyme II) has a molecular weight of 67,000, a Km value for most aldehydes in the millimolar range but no activity toward formaldehyde. NADP does serve as a coenzyme, however. The isoelectric point is 6.64 for this enzyme. By utilization of the different substrate properties of these two enzymes it was possible to demonstrate a time-dependent release from digitonin-treated liver mitochondria. The high Km, low molecular weight enzyme (enzyme II) is apparently in the intermembrane space while the low Km, high molecular weight enzyme (enzyme I) is in the mitochondrial matrix and is most likely responsible for oxidation of acetaldehyde formed from ethanol.  相似文献   

7.
Yeast alcohol dehydrogenase, purified from baker's yeast under conditions which exclude contamination by extraneous metal ions, is homogeneous by analytical ultracentrifugation and disc gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme has a molecular weight of 149,000 as determined by ultracentrifugation time-lapse photography and exhibits specific activities of 430 to 480 U/mg. Zinc analysis by three independent, highly sensitive methods, i.e., atomic absorption spectrometry, atomic fluorescence spectrometry, and microwave-induced plasma emission spectrometry, demonstrates 4 g-atom of catalytically essential Zn per mole of enzyme. No other metal atoms are present in stoichiometrically significant quantities as assessed by emission spectrography. The Stoichiometry of coenzyme binding, 4 mol of NADH/mol of enzyme, is identical to that of zinc, consistent with one coenzyme binding site and one zinc atom per enzyme subunit. Conditions for exchange of the four catalytically essential zinc atoms with 65Zn have been developed. These atoms exchange identically under all conditions examined. The resultant radiolabeled enzyme, l(YADH)65Zn4], has the same metal content, specific enzymatic activity, and coenzyme binding properties as the native enzyme. The 65Zn of this enzyme serves to monitor the extent and site specificity of cobalt replacement. The fully cobalt-substituted enzyme, [(YADH)Co4], has a specific activity of 80 U/mg, 17% that of the Zn enzyme, and exhibits absorption and circular dichroic spectra which are consistent with coordination by one or more sulfur ligands in a distorted tetrahedral geometry.  相似文献   

8.
Phosphoglycerate mutase has been purified from methanol-grown Hyphomicrobium X and Pseudomonas AMI by acid precipitation, heat treatment, ammonium sulphate fractionation, Sephadex G-50 gel filtration and DEAE-cellulose column chromatography. The purification attained using the Hyphomicrobium X extract was 72-fold, and using the Pseudomonas AMI extract, 140-fold. The enzyme purity, as shown by analytical polyacrylamide gel electrophoresis, was 50% from Hyphomicrobium X and 40% from Pseudomonas AMI. The enzyme activity was associated with one band. The purified preparations did not contain detectable amounts of phosphoglycerate kinase, phosphopyruvate hydratase, phosphoglycerate dehydrogenase or glycerate kinase activity. The molecular weight of the enzymic preparation was 32000 +/- 3000. The enzyme from both organisms was stable at low temperatures and, in the presence of 2,3-diphosphoglyceric acid, could withstand exposure to high temperatures. The enzyme from Pseudomonas AMI has a broad pH optimum at 7-0 to 7-6 whilst the enzyme from Hyphomicrobium X has an optimal activity at pH 7-3. The cofactor 2,3-diphosphoglyceric acid was required for maximum enzyme activity and high concentrations of 2-phosphoglyceric acid were inhibitory. The Km values for the Hyphomicrobium X enzyme were: 3-phosphoglyceric acid, 6-0 X 10(-3) M: 2-phosphoglyceric acid, 6-9 X 10(-4) M; 2,3-diphosphoglyceric acid, 8-0 X 10(-6) M; and for the Pseudomonas AMI ENzyme: 3-4 X 10(-3) M, 3-7 X 10(-4) M and 10 X 10(-6) M respectively. The equilibrium constant for the reaction was 11-3 +/- 2-5 in the direction of 2-phosphoglyceric acid to 3-phosphoglyceric acid and 0-09 +/- 0-02 in the reverse direction. The standard free energy for the reaction proceeding from 2-phosphoglyceric acid to 3-phosphoglyceric acid was -5-84 kJ mol(-1) and in the reverse direction +5-81 kJ mol(-1).  相似文献   

9.
l-Serine production by a methylotroph and its related enzymes   总被引:2,自引:0,他引:2  
The production process of l-serine from methanol and glycine has been developed using a methylotroph with the serine pathway. Consecutive reactions of two enzymes, methanol dehydrogenase (MDH) and serine hydroxymethyltransferase (SHMT) are involved in the production. We screened a high producer, Hyphomicrobium methylovorum, which is an obligate methylotroph. With resting cells of the bacterium, 24 mg/ml of l-serine was produced from 100 mg/ml of glycine and 48 mg/ml of methanol in 3 days under optimal conditions. Next, a glycine-resistant mutant GM2 showed improved serine production (32–34 mg/ml). The mutant GM2 was found to have elevated activities of MDH and SHMT. Since there has so far been little report on the systematic characterization of enzymes of the serine pathway in methylotrophs, not only the above two enzymes but also the other three enzymes in H. methylovorum were purified and characterized: MDH, SHMT and hydroxypyruvate reductase (HPR) were crystallized; serine-glyoxylate aminotransferase (SGAT) and glycerate kinase (GK) were purified to homogeneity. As a result, all these enzymes were found to be stable against preservation and to exist abundantly in the bacterium. The gene of SHMT was cloned and its deduced amino acid sequence had homology to those of Escherichia coli (55%) and rabbit liver (44%), whereas the enzyme of the bacterium was immunochemically distinguishable from those of microorganisms other than Hyphomicrobium strains and mammalian livers. Correspondence to: Y. Izumi  相似文献   

10.
Summary An alcohol dehydrogenase specific for NADP as coenzyme and with a pH optimum of 10.2 has been partially purified from the photosynthetic bacterium, Rhodomicrobium vannielii. With the exception of methan-1-ol, primary straight chain alcohols up to eight carbon atoms were active, highest rates being obtained with butan-1-ol. Substrate specificity was examined by both enzymic rate determination and Km value measurement. The alcohol dehydrogenase described was constitutive.  相似文献   

11.
Palaemon serratus muscle lactate dehydrogenase (LDH) has been partially purified. The electrophoretic pattern of the LDH enzymes indicates that at least two molecular structures are present. The mean molecular weight is 130,000. The substrate and coenzyme dependence of the LDH system show non-Michaelian kinetics. This can be interpreted as being due to the presence of two binding sites in the enzyme which show negative effects. The behaviour of the two molecular species of LDH appears to be nearly identical in this respect. The study of the effect of temperature on the kinetic parameters of the LDH system shows the existence of a thermal dependence of Km values. This may be related to developmental or environmental changes in the animal.  相似文献   

12.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

13.
A ferredoxin-dependent nitrite reductase from Spinacea oleracea was purified approximately 180-fold, with a specific activity of 285 units/mg protein. This purified enzyme also had methyl viologen-dependent nitrite reductase activity, with a specific activity of 164 units/mg protein. After disc electrophoresis with polyacrylamide gel, the purified enzyme showed one major and one minor protein band.

The molecular weight of the enzyme was estimated to be 86,000 from Ultrogel filtration. This purified enzyme in oxidized form had absorption peaks at 278, 390, 573 and 690 nm. The absorbance ratios, A390: A278 and A673: A390 were 0.61 and 0.37, respectively.

By applying the purified enzyme to DEAE-Sephadex A–50 column chromatography, the ferredoxin-dependent nitrite reductase activity was selectively decreased. However, the methyl viologen-dependent nitrite reductase activity was increased, with a specific activity of 391 units/mg protein. This modified enzyme was homogeneous by disc electrophoresis with polyacrylamide gel.  相似文献   

14.
The gene encoding (6R)-2,2,6-trimethyl-1,4-cyclohexanedione (levodione) reductase was cloned from the genomic DNA of the soil isolate bacterium Corynebacterium aquaticum M-13. The gene contained an open reading frame consisting of 801 nucleotides corresponding to 267 amino acid residues. The deduced amino acid sequence showed approximately 35% identity with other short chain alcohol dehydrogenase/reductase (SDR) superfamily enzymes. The probable NADH-binding site and three catalytic residues (Ser-Tyr-Lys) were conserved. The enzyme was sufficiently produced in recombinant Escherichia coli cells using an expression vector pKK223-3, and purified to homogeneity by two-column chromatography steps. The enzyme purified from E. coli catalyzed stereo- and regio-selective reduction of levodione, and was strongly activated by monovalent cations, such as K+, Na+, and NH4 +, as was the case of that from C. aquaticum M-13. To our knowledge, this is the first sequencing report of a monovalent cation-activated SDR enzyme.  相似文献   

15.
An NAD+-dependent alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1 was purified to homogeneity with an overall yield of about 20% and characterized enzymologically. The enzyme has an apparent molecular weight of 160k and consists of four identical subunits with a molecular weight of 40k. The pI value of the enzyme and its optimum pH for the oxidation reaction were determined to be 6.7 and 7.0, respectively. The enzyme contains 2 gram-atoms Zn per subunit. The enzyme exclusively requires NAD+ as a coenzyme and shows the pro-R stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of NAD+. F. frigidimaris KUC-1 alcohol dehydrogenase shows as high thermal stability as the enzymes from thermophilic microorganisms. The enzyme is active at 0 to over 85°C and the most active at 70°C. The half-life time and k cat value at 60°C were calculated to be 50 min and 27,400 min−1, respectively. The enzyme also shows high catalytic efficiency at low temperatures (0–20°C) (k cat/K m at 10°C; 12,600 mM−1 min−1) similar to other cold-active enzymes from psychrophiles. The alcohol dehydrogenase gene is composed of 1,035 bp and codes 344 amino acid residues with an estimated molecular weight of 36,823. The sequence identities were found with the amino acid sequences of alcohol dehydrogenases from Moraxella sp. TAE123 (67%), Pseudomonas aeruginosa (65%) and Geobacillus stearothermophilus LLD-R (56%). This is the first example of a cold-active and thermostable alcohol dehydrogenase.  相似文献   

16.
Citrate synthase [citrate (si)-synthase] (EC 4.1.3.7) was partially purified from extracts of highly purified typhus rickettsiae (Rickettsia prowazekii). Molecular exclusion and affinity column chromatography were used to prepare 200-fold-purified citrate synthase that contained no detectable malate dehydrogenase (EC 1.1.1.37) activity. Rickettsial malate dehydrogenase also was partially purified (200-fold) via this purification procedure. Catalytically active citrate synthase exhibited a relative molecular weight of approximately 62,000 after elution from a calibrated Sephacryl S-200 column. Acetyl coenzyme A saturation of partially purified enzyme was sensitive to strong competitive inhibition with adenylates (ATP greater than ADP much greater than AMP). [beta,gamma-methylene]ATP, dATP, and dADP also caused strong inhibition, but guanosine and cytosine nucleotides were significantly less inhibitory. Adenylates had no effect on oxalacetate saturation kinetics when acetyl coenzyme A was present in high concentration (greater than or equal to 50 microM). Neither NADH nor alpha-ketoglutarate affected the saturation kinetics of rickettsial citrate synthase. Thus, citrate synthase from R. prowazekii exhibits greater similarity to the eucaryotic and gram-positive procaryotic enzymes than to citrate synthase from free-living gram-negative bacteria. These results represent the first characterization of a highly purified key regulatory enzyme from these obligate intracellular parasitic bacteria.  相似文献   

17.
The enzymes nicotinate dehydrogenase and 6-hydroxynicotinate dehydrogenase from Bacillus niacini could be purified to homogeneity by means of anion exchange chromatography, hydrophobic interaction chromatography, gel filtration, and chromatography on hydroxylapatite. During enrichment procedures both enzymes showed a significant loss in specific activity. The molecular weight of nicotinate dehydrogenase and 6-hydroxynicotinate dehydrogenase was determined to be about 300,000 and 120,000, respectively. They were highly substrate specific and transferred electrons only to artificial acceptors of high redox potential. The K m for their specific substrates was about 1.0 mM for both enzymes, and their pH optimum was determined to be 7.5. For nicotinate dehydrogenase a content of 8.3 mol iron, 1.5 mol acid-labile sulfur, 2.0 mol flavin, and 1.5 mol molybdenum per mol of enzyme was determined. Both enzymes contained FAD and Fe/S center. After inhibition by KCN, thiocyanate was detected, and subsequently the initial nicotinate dehydrogenase activity was restored by the addition of Na2S indicating the presence of cyanolyzable sulfur. 6-Hydroxynicotinate dehydrogenase seemed to contain the same type of constituents as determined for nicotinate dehydrogenase. A partial immunological identity of the enzymes could be shown by antibodies raised against nicotinate dehydrogenase.Abbreviations DCPIP 2,6-dichlorophenol-indophenol - EEO electroendosmosis - FTTC fluorescein isothiocyanate - HAP hydroxylapatite - 6-HDH 6-hydroxynicotinate dehydrogenase - NBT nitroblue tetrazolium chloride - NDH nicotinate dehydrogenase - MTT thiazolyl blue - PES phenazine ethosulfate - PMSF phenylmethyl sulfonyl fluoride - TEMED N,N,N',N'-tetramethyl-ethylenediamine  相似文献   

18.
d-lactate dehydrogenase has been purified from horseshoe crab (Limulus polyphemus) skeletal muscle and the seaworm (Nereis virens). The purified Limulus dehydrogenase was shown to be a dimer, with a molecular weight of approximately 70 000. Sephadex gel filtration and equilibrium sedimentation yield molecular weights of about 80 000 and 70 000 respectively. Acid dissociation yields a molecular weight species of about 35 000. The native enzyme has an so20w of 3.95. Extrapolation of para-hydroxymercuribenzoate inhibition curves to 100% inhibition corresponds to two molecules of para-hydroxymercuribenzoate bound per molecule of enzyme. Studies on the stoichiometric binding of reduced coenzyme show two molecules bound per molecule of enzyme. The number of tryptic peptides has been found to be one-half that expected from the amino acid composition. The electrophoretic pattern of isoenzymic forms can be best interpreted as suggesting that the enzyme is dimeric. In vitro high salt, freeze-thaw hybridizations of the isolated Limulus muscle isoenzymes yield the electrophoretic pattern predicted by a dimeric structure.The physical properties ot Nereis lactate dehydrogenase have been found to be similar to those for the Limulus muscle lactate dehydrogenase.  相似文献   

19.
The localization of prominent proteins in intact cells of two methylotrophic bacteria, Hyphomicrobium sp. strain X and bacterium W3A1, was investigated by radiochemical labeling with [14C]isethionyl acetimidate. In bacterium W3A1, trimethylamine dehydrogenase was not labeled by the reagent and is, therefore, an intracellular protein, whereas the periplasmic location of the methylamine and methanol dehydrogenases was evidenced by being readily labeled in intact cells. Similarly, an intracellular location of the trimethylamine and dimethylamine dehydrogenases in Hyphomicrobium sp. strain X was indicated, whereas methanol dehydrogenase was periplasmic.  相似文献   

20.
Histamine dehydrogenase (HADH) isolated from Nocardioides simplex catalyzes the oxidative deamination of histamine to imidazole acetaldehyde. HADH is highly specific for histamine, and we are interested in understanding the recognition mode of histamine in its active site. We describe the first crystal structure of a recombinant form of HADH (HADH) to 2.7-Å resolution. HADH is a homodimer, where each 76-kDa subunit contains an iron-sulfur cluster ([4Fe-4S]2+) and a 6-S-cysteinyl flavin mononucleotide (6-S-Cys-FMN) as redox cofactors. The overall structure of HADH is very similar to that of trimethylamine dehydrogenase (TMADH) from Methylotrophus methylophilus (bacterium W3A1). However, some distinct differences between the structure of HADH and TMADH have been found. Tyr60, Trp264, and Trp355 provide the framework for the “aromatic bowl” that serves as a trimethylamine-binding site in TMADH is comprised of Gln65, Trp267, and Asp358, respectively, in HADH. The surface Tyr442 that is essential in transferring electrons to electron-transfer flavoprotein (ETF) in TMADH is not conserved in HADH. We use this structure to propose the binding mode for histamine in the active site of HADH through molecular modeling and to compare the interactions to those observed for other histamine-binding proteins whose structures are known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号